

Status: Currently Official on 15-Feb-2025
Official Date: Official as of 01-May-2020
Document Type: USP Monographs
DocId: GUID-FBC3160E-181B-4A9A-8EC0-599091B066E2_7_en-US
DOI: https://doi.org/10.31003/USPNF_M49500_07_01
DOI Ref: z9w9z

© 2025 USPC
Do not distribute

Mesna

$C_2H_5NaO_3S_2$ 164.18

Ethanesulfonic acid, 2-mercaptopropanoic acid, monosodium salt;

Sodium 2-mercaptopropanoate CAS RN®: 19767-45-4; UNII: NR701405Q9.

DEFINITION

Mesna contains NLT 96.0% and NMT 102.0% of mesna ($C_2H_5NaO_3S_2$), calculated on the dried basis.

IDENTIFICATION

Change to read:

- A. **▲SPECTROSCOPIC IDENTIFICATION TESTS (197), Infrared Spectroscopy: 197K▲** (CN 1-MAY-2020)

Add the following:

- B. The retention time of the mesna peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.▲2S (USP41)

Change to read:

- C.▲2S (USP41) **IDENTIFICATION TESTS—GENERAL (191), Chemical Identification Tests, Sodium:** Meets the requirements

ASSAY

Change to read:

- **PROCEDURE**

▲Mobile phase: In a 1000-mL volumetric flask, dissolve 2.94 g of potassium dihydrogen phosphate, 2.94 g of dipotassium hydrogen phosphate, and 2.6 g of tetrabutylammonium hydrogen sulfate in about 600 mL of water. Adjust with phosphoric acid to a pH of 2.3, add 335 mL of methanol, and dilute with water to volume.

Standard solution: 4 mg/mL of USP Mesna RS in *Mobile phase*

Sample solution: 4 mg/mL of Mesna in *Mobile phase*

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 235 nm

Column: 4.6-mm × 15-cm; 4-μm packing L1

Column temperature: 30°

Flow rate: 1 mL/min

Run time: NLT 4 times the retention time of mesna

Injection volume: 20 μL

System suitability

Sample: *Standard solution*

Suitability requirements

Relative standard deviation: NMT 0.73%

Analysis

Samples: *Standard solution* and *Sample solution*

[**NOTE**—If peak splitting is observed for the mesna peak, the peak response of mesna is the sum of split peaks.]

Calculate the percentage of mesna ($C_2H_5NaO_3S_2$) in the portion of Mesna taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_u = peak response of mesna from the *Sample solution*

r_s = peak response of mesna from the *Standard solution*

C_s = concentration of [USP Mesna RS](#) in the *Standard solution* (mg/mL)

C_u = concentration of Mesna in the *Sample solution* (mg/mL).▲2S (USP41)

Acceptance criteria: 96.0%–102.0% on the dried basis

IMPURITIES

Change to read:

- **LIMIT OF CHLORIDE**

Chloride standard solution: 8.24 µg/mL of [sodium chloride](#) in [water](#)

Sample solution: 200 mg/mL of Mesna in [carbon dioxide-free water](#)

Analysis: To 1 mL of the *Sample solution* and 15 mL of [water](#) add 1 mL of 2 M [nitric acid](#). Add the resulting solution to 1 mL of [silver nitrate](#) solution (17 g in 1000 mL), and allow to stand for 5 min, protected from light. To 10 mL of the *Chloride standard solution* add 5 mL of [water](#) and 1 mL of 2 M [nitric acid](#). To this solution add 1 mL of [silver nitrate](#) solution (17 g in 1000 mL), and allow to stand for 5 min, protected from light.▲▲2S (USP41)

Acceptance criteria: ▲When viewed against a dark background, the *Sample solution* is not more turbid than the *Chloride standard solution* (NMT 250 ppm).▲2S (USP41)

Change to read:

- **LIMIT OF SULFATE**

Diluent: 30% (v/v) [ethanol](#) in [water](#)

Sulfate standard stock solution: 1.81 mg/mL of [potassium sulfate](#) in *Diluent*

Sulfate standard solution: 0.0181 mg/mL of potassium sulfate in *Diluent*, prepared immediately before use from the *Sulfate standard stock solution*

Sample solution: Add 5.0 mL of the *Sample solution*, prepared as directed in the test for *Limit of Chloride* to a 30-mL volumetric flask, and dilute with [water](#) to volume.

Analysis: Add 3 mL of a 250-g/L solution of [barium chloride](#) to 4.5 mL of the *Sulfate standard solution*. Shake and allow to stand for 1 min. To 2.5 mL of this solution, add 15 mL of the *Sample solution* and 0.5 mL of [acetic acid](#). Use 15 mL of this mixture for comparison with 15 mL of the *Sulfate standard solution*, prepared in the same manner, but using the *Sulfate standard solution* instead of the *Sample solution*. After 5 min,▲measure the opacities in the *Sample solution* and in the *Sulfate standard solution*.▲2S (USP41)

Acceptance criteria: ▲Any opacity in the *Sample solution* is not more intense than that in the *Sulfate standard solution* (NMT 300 ppm).▲2S (USP41)

Change to read:

- **ORGANIC IMPURITIES**

Mobile phase: In a 1000-mL volumetric flask, dissolve 2.94 g of [potassium dihydrogen phosphate](#), 2.94 g of [dipotassium hydrogen phosphate](#), and 2.6 g of [tetrabutylammonium hydrogen sulfate](#) in about 600 mL of [water](#). Adjust with [phosphoric acid](#) to a pH of 2.3, add 335 mL of [methanol](#), and dilute with [water](#) to volume.

System suitability solution: 0.18 mg/mL of [USP Mesna RS](#) and 0.004 mg/mL of [USP Mesna Related Compound A RS](#) in *Mobile phase*

Standard solution 1: 8 µg/mL of [USP Mesna Related Compound A RS](#) and 120 µg/mL of [USP Mesna Related Compound B RS](#) in *Mobile phase*

Standard solution 2: 12 µg/mL of [USP Mesna RS](#) in *Mobile phase*

Sample solution: 4 mg/mL of Mesna in *Mobile phase*

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 235 nm

Column: 4.6-mm × 25-cm; 10-µm packing [L1](#)

Flow rate: 1 mL/min

Run time: ▲NLT▲2S (USP41) 4 times the retention time of mesna

Injection volume: 20 µL

System suitability

Sample: *System suitability solution*

[NOTE—The relative retention times for mesna and mesna related compound A are about 1.0 and 1.4, respectively.]

Suitability requirements

Resolution: NLT 3.0 between mesna and mesna related compound A

Analysis

Samples: *Standard solution 1*, *Standard solution 2*, and *Sample solution*

[NOTE—Identify the peaks using the relative retention times provided in [Table 1](#).]

Calculate the percentage of mesna related compound A in the portion of Mesna taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_u = peak response of mesna related compound A from the *Sample solution*

r_s = peak response of mesna related compound A from *Standard solution 1*

C_s = concentration of [USP Mesna Related Compound A RS](#) in *Standard solution 1* (mg/mL)

C_u = concentration of Mesna in the *Sample solution* (mg/mL)

Calculate the percentage of mesna related compound B in the portion of Mesna taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_u = peak response of mesna related compound B from the *Sample solution*

r_s = peak response of mesna related compound B from *Standard solution 1*

C_s = concentration of [USP Mesna Related Compound B RS](#) in *Standard solution 1* (mg/mL)

C_u = concentration of Mesna in the *Sample solution* (mg/mL)

Calculate the percentage of any specified impurities (thiouronium ethanesulfonic acid, guanidinethiouronium ethanesulfonic acid, and mesna triazine analog) and any unspecified impurities in the portion of Mesna taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times (1/F) \times 100$$

r_u = peak response of any specified or unspecified, individual impurity from the *Sample solution*

r_s = peak response of mesna from *Standard solution 2*

C_s = concentration of [USP Mesna RS](#) in *Standard solution 2* (mg/mL)

C_u = concentration of Mesna in the *Sample solution* (mg/mL)

F = relative response factors (see [Table 1](#))

Acceptance criteria: See [Table 1](#).

Table 1

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Thiouronium ethanesulfonic acid ^a	0.6	100	0.3
Guanidinethiouronium ethanesulfonic acid ^b	0.6	100	0.3
Mesna triazine analog ^c	0.8	100	0.3
Mesna	1.0	—	—
Mesna related compound A	1.4	—	0.2
Mesna related compound B	2.3	—	3.0
Individual, unspecified impurities	—	1.0	0.1
Total unspecified impurities	—	—	0.3

^a 2-(Carbamimidoylthio)ethane-1-sulfonic acid.

^b 2-[(N-Carbamimidoylcarbamimidoyl)thio]ethane-1-sulfonic acid.

^c 2-((4,6-Diamino-1,3,5-triazin-2-yl)thio)ethane-1-sulfonic acid.

SPECIFIC TESTS**Change to read:**

- [▲Loss on Drying \(731\)](#)▲2S (USP41)

Sample: 1 g**Analysis:** Dry the **Sample** under vacuum at a pressure not exceeding 1 mm of mercury at 60° over [phosphorus pentoxide](#) for 2 h.**Acceptance criteria:** NMT 1.0%

- [pH \(791\)](#)

Sample solution: 100 mg/mL of Mesna in [carbon dioxide-free water](#)**Acceptance criteria:** 4.5–6.0**ADDITIONAL REQUIREMENTS**

- **PACKAGING AND STORAGE:** Preserve in a tight container, and store at room temperature.

Change to read:

- [USP Reference Standards \(11\)](#)

[USP Mesna RS](#)[USP Mesna Related Compound A RS](#)

2-(Acetylthio)ethane-1-sulfonic acid, ▲potassium salt, crystal adduct with potassium chloride.

 $C_4H_7KO_4S_2 \cdot KCl$ 296.86▲ (ERR 1-Mar-2019)[USP Mesna Related Compound B RS](#)

2,2'-Disulfanediylbis(ethane-1-sulfonic acid), ▲dipotassium salt, crystal adduct with sodium chloride.

 $C_4H_8K_2O_6S_4 \cdot NaCl$ 416.98▲ (ERR 1-Mar-2019)**Auxiliary Information** - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
MESNA	Documentary Standards Support	SM22020 Small Molecules 2

Chromatographic Database Information: [Chromatographic Database](#)**Most Recently Appeared In:**

Pharmacopeial Forum: Volume No. PF 43(1)

Current DocID: GUID-FBC3160E-181B-4A9A-8EC0-599091B066E2_7_en-US**DOI:** https://doi.org/10.31003/USPNF_M49500_07_01**DOI ref:** [z9w9z](#)