

Status: Currently Official on 16-Feb-2025
Official Date: Official as of 01-Dec-2024
Document Type: USP Monographs
DocId: GUID-911FAC3F-744A-405F-BC8D-17B7EE479426_2_en-US
DOI: https://doi.org/10.31003/USPNF_M49445_02_01
DOI Ref: I9t94

© 2025 USPC
Do not distribute

Add the following:

^Mesalamine Suppositories

DEFINITION

Mesalamine Suppositories contain NLT 90.0% and NMT 110.0% of the labeled amount of mesalamine ($C_7H_7NO_3$).

IDENTIFICATION

- **A.** The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.
- **B.** The UV spectrum of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.

ASSAY

• PROCEDURE

Buffer: Dissolve 1.39 g of [potassium phosphate, monobasic](#) and 2.24 g of [octanesulfonic acid sodium salt, monohydrate](#) in 1 L of [water](#).

Adjust with [phosphoric acid](#) to a pH of 2.2.

Mobile phase: [Methanol](#), [acetonitrile](#), and *Buffer* (90:35:1000)

Standard solution: 0.1 mg/mL of [USP Mesalamine RS](#) in *Mobile phase*. Sonicate to dissolve, if necessary.

Sample stock solution: Nominally 5 mg/mL of mesalamine in 0.1 N [hydrochloric acid](#) prepared as follows. Transfer Suppositories (NLT 5) to a suitable volumetric flask. Melt the Suppositories completely at 60°. Add 80% of the flask volume of preheated 0.1 N [hydrochloric acid](#) at 60°. Stir vigorously to avoid lump formation. [NOTE—About 20 min stirring time is suggested.] Sonicate for NLT 15 min with intermittent shaking. Cool to room temperature and dilute with 0.1 N [hydrochloric acid](#) to volume. Allow to settle and pass through a suitable filter of 0.45-μm pore size.

Sample solution: Nominally 0.1 mg/mL of mesalamine from the *Sample stock solution* in *Mobile phase*

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 220 nm. For *Identification B*, use a diode array detector in the range of 200–400 nm.

Column: 4.6-mm × 15-cm; 5-μm packing [L7](#)

Column temperature: 30°

Flow rate: 2 mL/min

Injection volume: 20 μL

Run time: NLT 1.4 times the retention time of mesalamine

System suitability

Sample: *Standard solution*

Suitability requirements

Tailing factor: NMT 2.0

Relative standard deviation: NMT 1.0%

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of the labeled amount of mesalamine ($C_7H_7NO_3$) in the Suppositories taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

r_U = peak response of mesalamine from the *Sample solution*

r_S = peak response of mesalamine from the *Standard solution*

C_S = concentration of [USP Mesalamine RS](#) in the *Standard solution* (mg/mL)

C_U = nominal concentration of mesalamine in the *Sample solution* (mg/mL)**Acceptance criteria:** 90.0%–110.0%**PERFORMANCE TESTS**• **DISSOLUTION (711)****Medium:** Dissolve 27.22 g of [potassium phosphate, monobasic](#) and 6.5 g of [sodium hydroxide](#) in 1 L of [water](#). Adjust with 50% (w/v) [sodium hydroxide](#) solution to a pH of 7.5; 900 mL**Apparatus 2:** 125 rpm, with suitable sinker**Temperature:** 40°**Time:** 60 min**Buffer:** Transfer 7.1 g of [sodium phosphate, dibasic anhydrous](#) and 6.9 g of [sodium phosphate, monobasic](#) (monohydrate) in a 1000-mL volumetric flask, and dissolve in 800 mL of [water](#). Add 7.5 mL of [tetrabutylammonium hydroxide, 25 percent in methanol](#), mix, and dilute with [water](#) to volume.**Mobile phase:** [Methanol](#) and *Buffer* (30:70)**Standard solution:** 0.11 mg/mL of [USP Mesalamine RS](#) in *Medium*. Sonicate to dissolve, if necessary.**Sample solution:** Pass a portion of the solution under test through a suitable filter of 0.45-μm pore size. Dilute 2.0 mL of filtrate with *Medium* to 20 mL.**Chromatographic system**(See [Chromatography \(621\), System Suitability](#).)**Mode:** LC**Detector:** UV 330 nm**Column:** 4.6-mm × 15-cm; 5-μm packing [L1](#)**Column temperature:** 40°**Flow rate:** 1 mL/min**Injection volume:** 5 μL**Run time:** NLT 2.4 times the retention time of mesalamine**System suitability****Sample:** *Standard solution***Suitability requirements****Tailing factor:** NMT 2.0**Relative standard deviation:** NMT 2.0%**Analysis****Samples:** *Standard solution* and *Sample solution*Calculate the percentage of the labeled amount of mesalamine ($C_7H_7NO_3$) dissolved:

$$\text{Result} = (r_U/r_S) \times C_S \times V \times D \times (1/L) \times 100$$

 r_U = peak response of mesalamine from the *Sample solution* r_S = peak response of mesalamine from the *Standard solution* C_S = concentration of [USP Mesalamine RS](#) in the *Standard solution* (mg/mL) V = volume of *Medium*, 900 mL D = dilution factor for the *Sample solution*, 10 L = label claim of mesalamine (mg/Suppository)**Tolerances:** NLT 80% (Q) of the labeled amount of mesalamine ($C_7H_7NO_3$) is dissolved.• **UNIFORMITY OF DOSAGE UNITS (905):** Meets the requirements**IMPURITIES**• **ORGANIC IMPURITIES****Buffer, Mobile phase, and Sample stock solution:** Prepare as directed in the Assay.**System suitability solution:** 2.5 μg/mL each of [USP Mesalamine RS](#) and [USP 3-Aminosalicylic Acid RS](#) in *Mobile phase*. Sonicate to dissolve, if necessary.**Standard solution:** 1 μg/mL of [USP Mesalamine RS](#) in *Mobile phase*. Sonicate to dissolve, if necessary.

Sensitivity solution: 0.25 µg/mL of [USP Mesalamine RS](#) from the *Standard solution in Mobile phase*

Sample solution: Nominally 500 µg/mL of mesalamine from the *Sample stock solution in Mobile phase*

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 220 nm

Column: 4.6-mm × 15-cm; 5-µm packing [L7](#)

Column temperature: 30°

Flow rate: 1.5 mL/min

Injection volume: 20 µL

Run time: NLT 4 times the retention time of mesalamine

System suitability

Samples: *System suitability solution, Standard solution, and Sensitivity solution*

[**NOTE**—The relative retention times in [Table 1](#) are provided as information that could aid in peak assignment.]

Table 1

Name	Relative Retention Time
Mesalamine dicarboxylic acid analog ^a	0.18
Gentisic acid ^b	0.35
Hydroxyanthranilic acid ^c	0.59
Mesalamine	1.0
3-Aminosalicylic acid	1.16

^a 5-Amino-2-hydroxyisophthalic acid.

^b 2,5-Dihydroxybenzoic acid.

^c 2-Amino-5-hydroxybenzoic acid.

Suitability requirements

Resolution: NLT 1.5 between mesalamine and 3-aminosalicylic acid, *System suitability solution*

Relative standard deviation: NMT 5.0%, *Standard solution*

Signal-to-noise ratio: NLT 10, *Sensitivity solution*

Analysis

Samples: *Standard solution and Sample solution*

Calculate the percentage of gentisic acid and any unspecified degradation product in the portion of Suppositories taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times (1/F) \times 100$$

r_U = peak response of gentisic acid or any unspecified degradation product from the *Sample solution*

r_S = peak response of mesalamine from the *Standard solution*

C_S = concentration of [USP Mesalamine RS](#) in the *Standard solution* (µg/mL)

C_U = nominal concentration of mesalamine in the *Sample solution* (µg/mL)

F = relative response factor (see [Table 2](#))

Acceptance criteria: See [Table 2](#). The reporting threshold is 0.05%.

Table 2

Name	Relative Response Factor	Acceptance Criteria, NMT (%)
Gentisic acid	2.4	0.2
Any unspecified degradation product	1.0	0.2
Total degradation products	—	0.5

SPECIFIC TESTS

- [MICROBIAL ENUMERATION TESTS \(61\)](#) and [TESTS FOR SPECIFIED MICROORGANISMS \(62\)](#): The total aerobic microbial count is NMT 10^3 cfu/g. The total combined yeasts and molds count is NMT 10^2 cfu/g.

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in tight containers. Store below 25°. May be refrigerated. Keep away from direct heat, light, or humidity.

- [USP REFERENCE STANDARDS \(11\)](#).

[USP 3-Aminosalicylic Acid RS](#)

3-Amino-2-hydroxybenzoic acid.

$C_7H_7NO_3$ 153.14

[USP Mesalamine RS](#) ▲ (USP 1-Dec-2024)

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
MESALAMINE SUPPOSITORIES	Documentary Standards Support	SM22020 Small Molecules 2
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM22020 Small Molecules 2

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. 48(6)

Current DocID: [GUID-911FAC3F-744A-405F-BC8D-17B7EE479426_2_en-US](#)

DOI: https://doi.org/10.31003/USPNF_M49445_02_01

DOI ref: [I9t94](#)