

Status: Currently Official on 18-Feb-2025
Official Date: Official as of 01-Jul-2024
Document Type: USP Monographs
DocId: GUID-F44B5678-F9F2-4E44-BCA1-5C3DC5B0468D_9_en-US
DOI: https://doi.org/10.31003/USPNF_M49443_09_01
DOI Ref: mchwg

© 2025 USPC
Do not distribute

Mesalamine Extended-Release Capsules

To view the Notice from the Expert Committee that posted in conjunction with this accelerated revision, please click www.uspnf.com/rb-mesalamine-erc-20240628.

DEFINITION

Mesalamine Extended-Release Capsules contain NLT 90.0% and NMT 110.0% of the labeled amount of mesalamine ($C_7H_7NO_3$).

IDENTIFICATION

• A.

Diluent: 0.01 N [hydrochloric acid in water](#)

Diluted standard solution: 0.025 mg/mL of [USP Mesalamine RS](#) in *Diluent*

Diluted sample solution: Nominally 0.025 mg/mL of [USP Mesalamine RS](#) in *Diluent* from the *Sample solution*, prepared as described in the Assay

Acceptance criteria: The UV spectrum of the major peak of the *Diluted sample solution* corresponds to that of the *Diluted standard solution*, as obtained in the Assay.

• B. The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.

ASSAY

Change to read:

• PROCEDURE

Buffer: 1.36 g/L of [monobasic potassium phosphate](#) in [water](#)

Solution A: 6.8 g/L of [monobasic potassium phosphate](#) in [water](#)

Solution B: [Acetonitrile](#) and *Buffer* (50:50)

Mobile phase: See [Table 1](#).

Table 1

Time (min)	Solution A (%)	Solution B (%)
0	100	0
10	100	0
20	60	40
22	60	40
22.1	100	0
30	100	0

Diluent: 0.01 N [hydrochloric acid in water](#)

Standard solution: 0.1 mg/mL of [USP Mesalamine RS](#) in *Diluent*

Sample stock solution: Nominally 1.0 mg/mL of mesalamine from Capsules prepared as follows. Transfer a portion of the contents of Capsules (NLT 20), nominally equivalent to 100 mg of mesalamine, to a suitable volumetric flask. Add 50% ▲to up to 80%▲ (RB 1-Jul-2024) of the flask volume of *Diluent*, and sonicate for ▲NLT▲ (RB 1-Jul-2024) 30 min. Dilute with *Diluent* to volume, and mix. Centrifuge the solution at 3000 rpm for 10 min.

Sample solution: Nominally 0.1 mg/mL of mesalamine in *Diluent*, from the *Sample stock solution*. Pass a portion of the solution through a suitable filter of 0.45- μ m pore size.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 230 nm. For *Identification A*, use a diode array detector in the range of 200–400 nm.

Column: 4.6-mm × 25-cm; 5-μm packing [L1](#)

Temperatures

Autosampler: 5°

Column: 30°

Flow rate: 0.8 mL/min

Injection volume: 20 μL

System suitability

Sample: Standard solution

Suitability requirements

Tailing factor: NMT 2.0

Relative standard deviation: NMT 1.0%

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of the labeled amount of mesalamine ($C_7H_7NO_3$) in the portion of Capsules taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

r_U = peak response of mesalamine from the *Sample solution*

r_S = peak response of mesalamine from the *Standard solution*

C_S = concentration of [USP Mesalamine RS](#) in the *Standard solution* (mg/mL)

C_U = nominal concentration of mesalamine in the *Sample solution* (mg/mL)

Acceptance criteria: 90.0%–110.0%

PERFORMANCE TESTS

Change to read:

- [Dissolution \(711\)](#).

Test 1

Buffer: 0.05 M pH 7.5 phosphate buffer prepared as follows. Dissolve 6.8 g of [monobasic potassium phosphate](#) and 1 g of [sodium hydroxide](#) in [water](#) to make 1000 mL of solution. Adjust with 10 N [sodium hydroxide](#) to a pH of 7.50 ± 0.05 .

Medium: Buffer; 900 mL

Apparatus 2: 100 rpm

Times: 1, 2, 4, and 8 h

Standard solution: A known concentration of [USP Mesalamine RS](#) in *Medium*

Sample solution: Filter portions of the solution under test suitably diluted with *Medium*, if necessary.

Analysis: Calculate the percentages of the labeled amount of mesalamine ($C_7H_7NO_3$) dissolved at the wavelength of maximum absorbance

at about 330 nm by comparing the UV absorbances of the *Sample solution* with that of the *Standard solution*.

Tolerances: See [Table 2](#).

Table 2

Time (h)	Amount Dissolved (%)
1	5–25
2	30–50
4	60–90
8	NLT 85

The percentages of the labeled amount of mesalamine ($C_7H_7NO_3$) dissolved at the times specified conform to [Dissolution \(711\)](#).

[Acceptance Table 2](#).

Test 2: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 2*.

Acid stage

Medium: 0.1 N [hydrochloric acid](#); 750 mL, deaerated. [NOTE—After Acid stage, do not discard the solution. Retain the Capsules in proper order and proceed immediately as directed for Buffer stage.]

Apparatus 1: 100 rpm

Time: 2 h

Standard solution: 0.06 mg/mL of [USP Mesalamine RS](#) in *Medium*

Sample solution: Withdraw a portion of the solution under test and pass through a suitable filter of 0.45- μ m pore size and discard the first few milliliters. Add the same volume of *Medium* to the dissolution vessel.

Instrumental conditions

(See [Ultraviolet-Visible Spectroscopy \(857\)](#).)

Mode: UV

Analytical wavelength: 302 nm

Cell: 0.5 cm

Blank: *Medium*

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of the labeled amount of mesalamine ($C_7H_7NO_3$) dissolved:

$$\text{Result}_1 = (A_U/A_S) \times C_S \times V \times (1/L) \times 100$$

A_U = absorbance of the *Sample solution*

A_S = absorbance of the *Standard solution*

C_S = concentration of [USP Mesalamine RS](#) in the *Standard solution* (mg/mL)

V = volume of *Medium*, 750 mL

L = label claim (mg/Capsule)

Tolerances: NMT 10%. The percentage of the labeled amount of mesalamine ($C_7H_7NO_3$) dissolved at the time specified conforms to [Dissolution \(711\)](#), [Acceptance Table 3](#).

Buffer stage

Medium: After the *Acid stage*, immediately add 250 mL of 0.20 M sodium phosphate buffer solution [dissolve about 76 g of [sodium phosphate, tribasic](#) (dodecahydrate), in 1000 mL of [water](#); adjust, if necessary, with 10% (v/v) [phosphoric acid](#) or 2 N [sodium hydroxide](#) to a pH of 12.2] to the dissolution vessels containing the *Acid stage medium* (750 mL of 0.1 N hydrochloric acid). Adjust, if necessary, with 2 N [sodium hydroxide](#) or 2 N [hydrochloric acid](#) to a pH of 6.8; deaerated.

Apparatus 1: 100 rpm

Times: 0.5, 1, and 7 h

Solution A: Dissolve 3.4 g of [tetrabutylammonium hydrogen sulfate](#) and 1.4 g of [sodium acetate](#) (trihydrate) in 1000 mL of [water](#). Adjust with 1 N [sodium hydroxide](#) to a pH of 6.6. Add 200 mL of [acetonitrile](#).

Solution B: Dissolve 4.6 g of [tetrabutylammonium hydrogen sulfate](#) and 1.9 g of [sodium acetate](#) (trihydrate) in 1000 mL of [water](#). Adjust with 1 N [sodium hydroxide](#) to a pH of 6.6. Add 650 mL of [acetonitrile](#).

Mobile phase: *Solution A* and *Solution B* (90:10)

Standard solution: 0.06 mg/mL of [USP Mesalamine RS](#) in *Medium*

Sample solution: Pass a portion of the solution under test through a suitable filter of 0.45- μ m pore size and discard the first few milliliters. Add the same volume of *Medium* to the dissolution vessel. Dilute with *Medium*, if necessary, to obtain a solution with a similar concentration as the *Standard solution*.

Chromatographic system

(See [Chromatography \(621\)](#), [System Suitability](#).)

Mode: LC

Detector: UV 240 nm

Column: 4.6-mm \times 10-cm; 3- μ m packing [L1](#)

Temperatures

Autosampler: 5°

Column: 25°

Flow rate: 1.0 mL/min

Injection volume: 10 μ L

Run time: NLT 1.7 times the retention time of mesalamine

System suitability

Sample: *Standard solution*

Suitability requirements

Tailing factor: NMT 2.0

Relative standard deviation: NMT 2.0%

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the concentration (C) of mesalamine ($C_7H_7NO_3$) in the sample withdrawn from the vessel at each time point (i):

$$\text{Result}_i = (r_u/r_s) \times C_s \times D$$

r_u = peak response of mesalamine from the *Sample solution*

r_s = peak response of mesalamine from the *Standard solution*

C_s = concentration of [USP Mesalamine RS](#) in the *Standard solution* (mg/mL)

D = dilution factor for the *Sample solution*

Calculate the percentage of the labeled amount of mesalamine ($C_7H_7NO_3$) dissolved at each time point (i):

$$\text{Result}_1 = C_1 \times V \times (1/L) \times 100$$

$$\text{Result}_2 = [(C_2 \times V) + (C_1 \times V_s)] \times (1/L) \times 100$$

$$\text{Result}_3 = \{(C_3 \times V) + [(C_2 + C_1) \times V_s]\} \times (1/L) \times 100$$

C_i = concentration of mesalamine in the portion of sample withdrawn at time point i (mg/mL)

V = volume of *Medium*, 1000 mL

L = label claim (mg/Capsule)

V_s = volume of the *Sample solution* withdrawn at each time point from the *Medium* (mL)

Tolerances: See [Table 3](#).

Table 3

Time Point (i)	Time (h)	Amount Dissolved (%)
1	0.5	18–43
2	1	35–55
3	7	NLT 80

The percentages of the labeled amount of mesalamine ($C_7H_7NO_3$) dissolved at the times specified conform to [Dissolution \(711\)](#),

[Acceptance Table 2](#).

Test 3: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 3*.

Acid stage

Medium: 0.1 N [hydrochloric acid](#); 750 mL

Apparatus 1: 100 rpm

Time: 2 h

Standard solution: 0.035 mg/mL of [USP Mesalamine RS](#) in *Medium*. Sonicate to dissolve if necessary.

Sample solution: At the end of the 2-h *Acid stage*, withdraw 13 mL of the solution under test and pass through a suitable filter of 0.45- μ m pore size. Discard the first 5 mL of the filtrate.

Instrumental conditions

(See [Ultraviolet-Visible Spectroscopy \(857\)](#).)

Mode: UV

Analytical wavelength: 302 nm

Cell: 1 cm

Blank: *Medium*

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of the labeled amount of mesalamine ($C_7H_7NO_3$) dissolved in the *Acid stage*:

$$\text{Result} = (A_u/A_s) \times C_s \times V \times (1/L) \times 100$$

A_u = absorbance of the *Sample solution*

A_s = absorbance of the *Standard solution*

C_s = concentration of [USP Mesalamine RS](#) in the *Standard solution* (mg/mL)

V = volume of *Medium*, 750 mL

L = label claim (mg/Capsule)

Tolerances: NMT 10%. The percentage of the labeled amount of mesalamine ($C_7H_7NO_3$) dissolved at the time specified conforms to [Dissolution \(711\)](#), [Acceptance Table 3](#).

Buffer stage

Medium: pH 6.8 phosphate buffer (dissolve 6.8 g of [potassium phosphate, monobasic](#) in each liter of water; adjust with 1 N [sodium hydroxide](#) solution to a pH of 6.8); 1000 mL

Apparatus 1: 100 rpm

Times: 0.5, 2, and 7 h

Standard solution: 0.03 mg/mL of [USP Mesalamine RS](#) in *Medium*. Sonicate to dissolve if necessary. [Note—The *Standard solution* is stable for 20 h at room temperature.]

Sample solution: After the 2-h *Acid* stage, discard the *Acid stage medium* and carefully keep the remaining Capsule contents in the vessels. Add 1000 mL of *Buffer stage medium* into the vessels and continue with the *Buffer stage* conditions. At the specified time points, pass 13 mL of the solution under test through a suitable filter of 0.45- μ m pore size, discarding the first 5 mL of the filtrate. Dilute 2.0 mL of the filtrate with *Buffer stage medium* to 25.0 mL. Replace the 13 mL withdrawn at the 0.5 and 2 h time points with an equal volume of the *Buffer stage medium*. [Note—The *Sample solution* is stable for 11 h at room temperature.]

Instrumental conditions

(See [Ultraviolet-Visible Spectroscopy \(857\)](#).)

Mode: UV

Analytical wavelength: 331 nm

Cell: 1 cm

Blank: *Medium*

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the concentration (C) of mesalamine ($C_7H_7NO_3$) in the sample withdrawn from the vessel at each time point (i):

$$\text{Result}_i = (A_U/A_S) \times C_S \times D$$

A_U = absorbance of the *Sample solution*

A_S = absorbance of the *Standard solution*

C_S = concentration of [USP Mesalamine RS](#) in the *Standard solution* (mg/mL)

D = dilution factor for the *Sample solution*

Calculate the percentage of the labeled amount of mesalamine ($C_7H_7NO_3$) dissolved at each time point (i):

$$\text{Result}_1 = C_1 \times V \times (1/L) \times 100$$

$$\text{Result}_2 = [(C_2 \times V) + (C_1 \times V_S)] \times (1/L) \times 100$$

$$\text{Result}_3 = \{(C_3 \times V) + [(C_2 + C_1) \times V_S]\} \times (1/L) \times 100$$

C_i = concentration of mesalamine in the portion of sample withdrawn at each time point (mg/mL)

V = volume of *Medium*, 1000 mL

L = label claim (mg/Capsule)

V_S = volume of the *Sample solution* withdrawn at each time point and replaced with the *Medium*, 13 mL

Tolerances: See [Table 4](#).

Table 4

Time Point (i)	Time (h)	Amount Dissolved (%)
1	0.5	16–36
2	2	52–72
3	7	NLT 80

The percentages of the labeled amount of mesalamine ($C_7H_7NO_3$) dissolved at the times specified conform to [Dissolution \(711\)](#).

[Acceptance Table 2](#).

Test 4: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 4*.

Medium: 0.05 M pH 7.5 phosphate buffer (dissolve 6.8 g of [potassium phosphate monobasic](#) and 1 g of [sodium hydroxide](#) in 1000 mL of [water](#); adjust with 10 N [sodium hydroxide](#) to a pH of 7.5); 900 mL, deaerated

Apparatus 2: 100 rpm

Times: 1, 2, 4, and 8 h

Standard solution: 0.033 mg/mL of [USP Mesalamine RS](#) in *Medium*. Sonicate to dissolve. [NOTE—The *Standard solution* is stable for 6 h at room temperature.]

Sample solution: At the specified time points, withdraw a known volume of the solution under test and replace with equal volume of fresh *Medium*. Pass the withdrawn solution through a suitable filter of 0.45- μ m pore size, discarding the first 4 mL of the filtrate. Dilute with *Medium* to a concentration similar to that of the *Standard solution*. Pass through a suitable filter of 0.45- μ m pore size, discarding the first 5 mL of the filtrate. [NOTE—The unfiltered *Sample solution* is stable for 16 h at room temperature. After filtration it is recommended to measure the *Sample solution* absorbance within 2 h.]

Instrumental conditions

(See [Ultraviolet-Visible Spectroscopy \(857\)](#).)

Mode: UV

Analytical wavelength: 330 nm

Blank: *Medium*

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the concentration (C_i) of mesalamine ($C_7H_7NO_3$) in the sample withdrawn from the vessel at each time point (i):

$$\text{Result}_i = (A_U/A_S) \times C_S \times D$$

A_U = absorbance of the *Sample solution*

A_S = absorbance of the *Standard solution*

C_S = concentration of [USP Mesalamine RS](#) in the *Standard solution* (mg/mL)

D = dilution factor for the *Sample solution*

Calculate the percentage of the labeled amount of mesalamine ($C_7H_7NO_3$) dissolved at each time point (i):

$$\text{Result}_1 = C_1 \times V \times (1/L) \times 100$$

$$\text{Result}_2 = [(C_2 \times V) + (C_1 \times V_S)] \times (1/L) \times 100$$

$$\text{Result}_3 = \{(C_3 \times V) + [(C_2 + C_1) \times V_S]\} \times (1/L) \times 100$$

$$\text{Result}_4 = \{(C_4 \times V) + [(C_3 + C_2 + C_1) \times V_S]\} \times (1/L) \times 100$$

C_i = concentration of mesalamine in the portion of sample withdrawn at each time point (mg/mL)

V = volume of *Medium*, 900 mL

L = label claim (mg/Capsule)

V_S = volume of the *Sample solution* withdrawn at each time point and replaced with the *Medium* (mL)

Tolerances: See [Table 5](#).

Table 5

Time Point (i)	Time (h)	Amount Dissolved (%)
1	1	10–30
2	2	30–50
3	4	62–87
4	8	NLT 85

The percentages of the labeled amount of mesalamine ($C_7H_7NO_3$) dissolved at the times specified conform to [Dissolution \(711\)](#).

Acceptance Table 2.

Test 5: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 5*.

Acid stage medium: 0.1 N [hydrochloric acid](#); 750 mL, deaerated.

After the *Acid stage*, do not discard the solution, retain the Capsules in proper order and proceed immediately as directed for the *Buffer stage*. The time between completion of acid stage dissolution and starting of buffer stage dissolution should be NMT 30 min.

Solution A: 0.20 M sodium phosphate buffer solution prepared as follows. Dissolve 76 g of [sodium phosphate, tribasic](#) in 1000 mL of [water](#). Adjust with 10% (v/v) [phosphoric acid](#) or 2 N [sodium hydroxide](#) to a pH of 12.2.

Buffer stage medium: pH 6.8 phosphate buffer. (After the *Acid stage*, add 250 mL of *Solution A* to the dissolution vessels containing the *Acid stage medium*. Adjust with 2 N [sodium hydroxide](#) or 2 N [hydrochloric acid](#) to a pH of 6.8); 1000 mL, deaerated.

Apparatus 1: 100 rpm

Times

Acid stage: 2 h

Buffer stage: 0.5, 1, and 7 h. The time in the *Buffer stage medium* does not include the time in the *Acid stage medium*.

Acid stage standard solution: 0.05 mg/mL of [USP Mesalamine RS](#) in *Acid stage medium*. Sonicate to dissolve, if necessary. Allow to cool at room temperature. [NOTE—The *Acid stage standard solution* may be stable for 10 h at room temperature or in a refrigerator.]

Buffer stage standard solution: 0.375 mg/mL of [USP Mesalamine RS](#) in *Buffer stage medium*. Sonicate to dissolve, if necessary. Allow to cool at room temperature.

Acid stage sample solution: Pass a portion of the solution under test through a suitable filter of 0.45- μ m pore size, discarding an appropriate volume of filtrate so that a consistent result can be obtained. Replace the portion withdrawn with the same volume of *Acid stage medium* in the dissolution vessel. [NOTE—The *Acid stage sample solution* may be stable for 20 h at room temperature or in a refrigerator.]

Buffer stage sample solution: At the specified time interval, pass a portion of the solution under test through a suitable filter of 0.45- μ m pore size, discarding an appropriate volume of filtrate so that a consistent result can be obtained. Replace the portion withdrawn with the same volume of *Buffer stage medium* in the dissolution vessel.

Solution B: Dissolve 6.9 g of [sodium phosphate, monobasic](#) in 1000 mL of [water](#). Adjust with 1 N [sodium hydroxide](#) to a pH of 6.2.

Mobile phase: [Methanol](#) and *Solution B* (5:95)

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 330 nm

Column: 4.6-mm \times 25-cm; 5- μ m packing [L1](#)

Column temperature: 40°

Flow rate: 1.2 mL/min

Injection volume: 5 μ L

Run time: NLT 1.8 times the retention time of mesalamine

System suitability

Samples: *Acid stage standard solution* and *Buffer stage standard solution*

Suitability requirements

Tailing factor: NMT 2.0 for both *Acid stage standard solution* and *Buffer stage standard solution*

Relative standard deviation: NMT 2.0% for both *Acid stage standard solution* and *Buffer stage standard solution*

Analysis

Samples: *Acid stage standard solution*, *Buffer stage standard solution*, *Acid stage sample solution*, and *Buffer stage sample solution*

Calculate the percentage (Q_A) of the labeled amount of mesalamine ($C_7H_7NO_3$) dissolved in the *Acid stage*:

$$\text{Result} = (r_U/r_S) \times C_S \times V_A \times (1/L) \times 100$$

r_U = peak response of mesalamine from the *Acid stage sample solution*

r_S = peak response of mesalamine from the *Acid stage standard solution*

C_S = concentration of [USP Mesalamine RS](#) in the *Acid stage standard solution* (mg/mL)

V_A = volume of *Acid stage medium*, 750 mL

L = label claim (mg/Capsule)

Calculate the concentration (C_i) of mesalamine ($C_7H_7NO_3$) in the sample withdrawn from the vessel at each time point (i) during the

Buffer stage:

$$\text{Result}_i = (r_U/r_S) \times C_S$$

r_U = peak response of mesalamine from the *Buffer stage sample solution*

r_s = peak response of mesalamine from the *Buffer stage standard solution* C_s = concentration of [USP Mesalamine RS](#) in the *Buffer stage standard solution* (mg/mL)Calculate the percentage of the labeled amount of mesalamine ($C_7H_7NO_3$) dissolved at each time point (*i*) during the *Buffer stage*:

$$\text{Result}_1 = [C_1 \times V_B \times (1/L) \times 100] + (Q_A \times V_{SA}/V_A)$$

$$\text{Result}_2 = \{[(C_2 \times V_B) + (C_1 \times V_{SB})] \times (1/L) \times 100\} + (Q_A \times V_{SA}/V_A)$$

$$\text{Result}_3 = \{[(C_3 \times V_B) + (C_2 + C_1) \times V_{SB}]\} \times (1/L) \times 100 + (Q_A \times V_{SA}/V_A)$$

 C_i = concentration of mesalamine in the portion of sample withdrawn at time point *i* during the *Buffer stage* (mg/mL) V_B = volume of *Buffer stage medium*, 1000 mL L = label claim (mg/Capsule) Q_A = the percentage of the labeled amount of mesalamine dissolved in the *Acid stage* V_{SA} = volume of the *Acid stage sample solution* withdrawn at the *Acid stage* and replaced with *Acid stage medium* (mL) V_A = volume of the *Acid stage medium*, 750 mL V_{SB} = volume of the *Buffer stage sample solution* withdrawn at each time point of the *Buffer stage* and replaced with *Buffer stage medium* (mL)

Tolerances

Acid stage: NMT 10%. The percentage of the labeled amount of mesalamine ($C_7H_7NO_3$) dissolved at the time specified conforms to[Dissolution \(711\), Acceptance Table 3](#).**Buffer stage:** See [Table 6](#).**Table 6**

Time Point (<i>i</i>)	Time (h)	Amount Dissolved (%)
1	0.5	15-35
2	1	35-55
3	7	NLT 80

The percentages of the labeled amount of mesalamine ($C_7H_7NO_3$) dissolved at the times specified conform to [Dissolution \(711\)](#),[Acceptance Table 2](#).**▲Test 6:** If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 6*.**Acid stage medium:** 0.1 N [hydrochloric acid](#); 750 mL, deaerated, if necessary**Buffer stage medium:** pH 6.8 phosphate buffer. (Add 250 mL of 0.2 M [potassium phosphate monobasic](#) solution and 112 mL of 0.2 N [sodium hydroxide](#). Dilute with [water](#) to 1000 mL. Adjust with 0.2 M [potassium phosphate monobasic](#) solution or 0.2 N [sodium hydroxide](#) to a pH of 6.8, if necessary.); 1000 mL, deaerated, if necessary.**Apparatus 1:** 100 rpm**Times****Acid stage:** 2 h**Buffer stage:** 0.5, 1, and 7 h. The time in the *Buffer stage medium* does not include the time in the *Acid stage medium*.**Diluent:** [Acetonitrile](#), [methanol](#), and [water](#) (13:8:79). Adjust with [phosphoric acid](#) to a pH of 1.5.**Solution A:** Dissolve 1.36 g of [potassium phosphate monobasic](#) and 2.2 g of [octanesulfonic acid sodium salt](#) in 890 mL of [water](#). Adjust with [phosphoric acid](#) to a pH of 2.2.**Mobile phase:** [Acetonitrile](#), [methanol](#), and [Solution A](#) (13:8:89)**Acid stage standard stock solution:** 0.4 mg/mL of [USP Mesalamine RS](#) in [Diluent](#). Sonicate to dissolve, if necessary.**Acid stage standard solution:** 0.032 mg/mL of [USP Mesalamine RS](#) prepared as follows. Transfer a suitable volume of *Acid stage standard stock solution* to an appropriate volumetric flask and add 6% of the flask volume of *Acid stage medium*. Dilute with [Diluent](#) to volume.**Buffer stage standard stock solution:** 0.4 mg/mL of [USP Mesalamine RS](#) in [Diluent](#). Sonicate to dissolve, if necessary.**Buffer stage standard solution:** 0.032 mg/mL of [USP Mesalamine RS](#) prepared as follows. Transfer a suitable volume of *Buffer stage standard stock solution* to an appropriate volumetric flask and add 8% of the flask volume of *Buffer stage medium*. Dilute with [Diluent](#) to volume.

Acid stage sample solution: Pass a portion of the solution under test through a suitable filter, discarding an appropriate volume of filtrate so that a consistent result can be obtained. Dilute 3 mL of the filtrate with *Diluent* to 50 mL.

Buffer stage sample solution: After the *Acid stage*, discard the *Acid stage medium* and carefully keep the remaining Capsule contents in the vessels. Add 1000 mL of *Buffer stage medium* into the vessels and continue with the *Buffer stage* conditions. At the specified time interval, pass a portion of the solution under test through a suitable filter, discarding an appropriate volume of filtrate so that a consistent result can be obtained. Dilute 4 mL of the filtrate with *Diluent* to 50 mL. Replace the portion withdrawn with the same volume of *Buffer stage medium* in the dissolution vessel.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 230 nm

Column: 4.6-mm × 15-cm; 5-μm packing [L1](#)

Column temperature: 60°

Flow rate: 1.2 mL/min

Injection volume: 20 μL

Run time: NLT 1.7 times the retention time of mesalamine

System suitability

Samples: Acid stage standard solution and Buffer stage standard solution

Suitability requirements

Tailing factor: NMT 2.0 for both Acid stage standard solution and Buffer stage standard solution

Relative standard deviation: NMT 2.0% for both Acid stage standard solution and Buffer stage standard solution

Analysis

Samples: Acid stage standard solution, Buffer stage standard solution, Acid stage sample solution, and Buffer stage sample solution

Calculate the percentage (Q_A) of the labeled amount of mesalamine ($C_7H_7NO_3$) dissolved in the Acid stage:

$$\text{Result} = (r_U/r_S) \times C_S \times V_A \times D \times (1/L) \times 100$$

r_U = peak response of mesalamine from the Acid stage sample solution

r_S = peak response of mesalamine from the Acid stage standard solution

C_S = concentration of [USP Mesalamine RS](#) in the Acid stage standard solution (mg/mL)

V_A = volume of Acid stage medium, 750 mL

D = dilution factor of the Acid stage sample solution

L = label claim (mg/Capsule)

Calculate the concentration (C_i) of mesalamine ($C_7H_7NO_3$) in the sample withdrawn from the vessel at each time point (i) during the Buffer stage:

$$\text{Result}_i = (r_U/r_S) \times C_S \times D$$

r_U = peak response of mesalamine from the Buffer stage sample solution

r_S = peak response of mesalamine from the Buffer stage standard solution

C_S = concentration of [USP Mesalamine RS](#) in the Buffer stage standard solution (mg/mL)

D = dilution factor of the Buffer stage sample solution

Calculate the percentage of the labeled amount of mesalamine ($C_7H_7NO_3$) dissolved at each time point (i) during the Buffer stage:

$$\text{Result}_1 = [C_1 \times V_B \times (1/L) \times 100] + Q_A$$

$$\text{Result}_2 = \{[(C_2 \times V_B) + (C_1 \times V_{SB})] \times (1/L) \times 100\} + Q_A$$

$$\text{Result}_3 = \{[(C_3 \times V_B) + [(C_2 + C_1) \times V_{SB}]] \times (1/L) \times 100\} + Q_A$$

C_i = concentration of mesalamine in the portion of sample withdrawn at time point i during the Buffer stage (mg/mL)

V_B = volume of Buffer stage medium, 1000 mL

L = label claim (mg/Capsule)

Q_A = the percentage of the labeled amount of mesalamine dissolved in the Acid stage

V_s = volume of the *Buffer stage sample solution* withdrawn at each time point of the *Buffer stage* and replaced with *Buffer stage medium* (mL)

Tolerances

Acid stage: NMT 10%. The percentage of the labeled amount of mesalamine ($C_7H_7NO_3$) dissolved at the time specified conforms to

[Dissolution \(711\)](#), [Acceptance Table 3](#).

Buffer stage: See [Table 7](#).

Table 7

Time Point (i)	Time (h)	Amount Dissolved (%)
1	0.5	7-27
2	1	46-66
3	7	NLT 80

The percentages of the labeled amount of mesalamine ($C_7H_7NO_3$) dissolved at the times specified conform to [Dissolution \(711\)](#),

[Acceptance Table 2](#). ▲ (RB 1-Jul-2024)

- **UNIFORMITY OF DOSAGE UNITS (905):** Meet the requirements

IMPURITIES

Change to read:

- **ORGANIC IMPURITIES**

Buffer, Solution A, Solution B, Diluent, and Chromatographic system: Proceed as directed in the Assay.

Mobile phase: See ▲ [Table 8](#).

Table 8 ▲ (RB 1-Jul-2024)

Time (min)	Solution A (%)	Solution B (%)
0	100	0
10	100	0
40	30	70
45	30	70
46	100	0
55	100	0

Sensitivity solution: 0.5 µg/mL of [USP Mesalamine RS](#) in *Diluent*

Standard solution: 0.001 mg/mL of [USP Mesalamine RS](#) in *Diluent*

Sample solution: Nominally 1.0 mg/mL of mesalamine from Capsules prepared as follows. Transfer a portion of the contents of Capsules (NLT 20), nominally equivalent to 25 mg of mesalamine, to a suitable volumetric flask. Add ▲50% to up to 80%▲ (RB 1-Jul-2024) of the flask volume of *Diluent*, and sonicate for ▲NLT▲ (RB 1-Jul-2024) 30 min. Dilute with *Diluent* to volume, and mix. Centrifuge the solution at 3000 rpm for 10 min. Pass a portion of the solution through a suitable filter of 0.45-µm pore size.

System suitability

Samples: *Sensitivity solution* and *Standard solution*

Suitability requirements

Relative standard deviation: NMT 5.0%, *Standard solution*

Signal-to-noise ratio: NLT 10, *Sensitivity solution*

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of any unspecified degradation product in the portion of Capsules taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_U = peak response of any unspecified degradation product from the *Sample solution* r_S = peak response of mesalamine from the *Standard solution* C_S = concentration of [USP Mesalamine RS](#) in the *Standard solution* (mg/mL) C_U = nominal concentration of mesalamine in the *Sample solution* (mg/mL)**Acceptance criteria:** The reporting threshold is 0.05%.**Any unspecified degradation product:** NMT 0.13%**Total degradation products:** NMT 0.5%**ADDITIONAL REQUIREMENTS**

- **PACKAGING AND STORAGE:** Preserve in tight, light-resistant containers. Store at controlled room temperature.
- **LABELING:** When more than one *Dissolution* test is given, the labeling states the *Dissolution* test used only if *Test 1* is not used.
- [USP Reference Standards \(11\)](#)
[USP Mesalamine RS](#)

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
MESALAMINE EXTENDED-RELEASE CAPSULES	Documentary Standards Support	SM22020 Small Molecules 2
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM22020 Small Molecules 2

Chromatographic Database Information: [Chromatographic Database](#)**Most Recently Appeared In:**

Pharmacopeial Forum: Volume No. 47(6)

Current DocID: [GUID-F44B5678-F9F2-4E44-BCA1-5C3DC5B0468D_9_en-US](#)**DOI:** https://doi.org/10.31003/USPNF_M49443_09_01**DOI ref:** [mchwg](#)