

Status: Currently Official on 18-Feb-2025
Official Date: Official as of 01-Nov-2020
Document Type: NF Monographs
DocId: GUID-995A5AEA-A8B8-473A-BE2C-94DA0912145B_5_en-US
DOI: https://doi.org/10.31003/USPNF_M85460_05_01
DOI Ref: hii31

© 2025 USPC
Do not distribute

Medium-Chain Triglycerides

Glycerides, mixed decanoyl and octanoyl;
Caprylic and capric triglycerides.

DEFINITION

Medium-Chain Triglycerides consist of a mixture of triglycerides of saturated fatty acids, mainly of caprylic acid ($C_8H_{16}O_2$) and capric acid ($C_{10}H_{20}O_2$). The fatty acids are derived from the oil extracted from the hard, dried fraction of the endosperm of *Cocos nucifera* L. or from the dried endosperm of *Elaeis guineensis* Jacq. They contain NLT 95% of saturated fatty acids with 8 and 10 carbon atoms.

IDENTIFICATION

Delete the following:

- ▲ A. Meet the requirements in *Specific Tests* for [Fats and Fixed Oils \(401\), Procedures, Saponification Value](#)▲ (NF 1-May-2020)

Change to read:

- ▲ A.▲ (NF 1-MAY-2020) Meet the requirements in *Specific Tests* for [Fats and Fixed Oils \(401\), Procedures, Fatty Acid Composition](#)

IMPURITIES

• **LIMIT OF CHROMIUM, COPPER, LEAD, AND NICKEL**

[NOTE—Use this test for Medium-Chain Triglycerides intended for use in parenteral nutrition.]

Internal standard solution: [NOTE—Prepare this solution fresh every 6 months.] Transfer 2.0 mL of a solution containing 1000 mg/L of yttrium [NOTE—Yttrium ICP standard solutions are commercially available.¹] and 2.0 mL of a solution containing 1000 mg/L of lutetium [NOTE—Lutetium ICP standard solutions are commercially available.²] to a 1000-mL volumetric flask, add 10 mL of 65% [ultratrace nitric acid](#), dilute with [water](#) to volume, and mix.

Blank standard: Transfer 1.0 mL of the *Internal standard solution* to a 100-mL volumetric flask, add 10.0 mL of 65% [ultratrace nitric acid](#), dilute with [water](#) to volume, and mix.

Standard stock solution: Transfer 1.0 mL each of the solutions containing 1000 mg/L of chromium, copper, lead, and nickel [NOTE—Single-element ICP standard solutions are commercially available.³] to a 100-mL volumetric flask, add 10.0 mL of 65% [ultratrace nitric acid](#), dilute with [water](#) to volume, and mix. [NOTE—Prepare this solution fresh monthly.] Transfer 1.0 mL of this solution to a 100-mL volumetric flask, add 10 mL of 65% [ultratrace nitric acid](#), dilute with [water](#) to volume, and mix. The concentration of each element in this solution is 100 μ g/L. [NOTE—Prepare this solution fresh weekly.]

Standard solutions: [NOTE—Prepare these solutions fresh each time.]

Into two separate 100-mL volumetric flasks, transfer 1.0 mL and 5.0 mL of the *Standard stock solution*, add 1.0 mL of the *Internal standard solution* and 10.0 mL of 65% [ultratrace nitric acid](#), dilute with [water](#) to volume, and mix well. The concentration of each element in these solutions is 1 μ g/L and 5 μ g/L, respectively.

Sample solution: Transfer 3.5 g of Medium-Chain Triglycerides into a suitable quartz flask. Add 5 mL of concentrated sulfuric acid⁴ and heat slowly on a hot-plate in a fume hood. At the boiling heat, carefully add 5 mL of 30% hydrogen peroxide⁵ in 1-mL increments. Continue heating until the solution is clear and colorless. Otherwise, add another 3 mL of concentrated sulfuric acid and continue to add more 30% hydrogen peroxide. After cooling, cautiously add about 5 mL of [water](#) dropwise. Quantitatively transfer the flask's contents into a clean, dry, 20-mL volumetric flask, dilute with [water](#) to volume, and mix. Transfer 1.0 mL of digestion solution to a 20-mL volumetric flask, add 0.2 mL of the *Internal standard solution* and 2.0 mL of 65% [ultratrace nitric acid](#), dilute with [water](#) to volume, and mix. Retain the remaining digestion solution for use in the test for *Limit of Tin*.

Blank solution: Prepare the blank digestion solution, following the preparation procedure for the *Sample solution*, but without using Medium-Chain Triglycerides.

Instrumental conditions

(See [Plasma Spectrochemistry \(730\)](#).)

Mode: ICP-MS

Spectrometer: Quadrupole mass spectrometer

Detector: Ion detector maintained under vacuum

System suitability

Samples: Blank standard and Standard solutions

Suitability requirements: Instrument performance must be verified to conform to the manufacturer's specifications for resolution and sensitivity. Before analyzing the *Sample solutions*, the instrument must pass a suitable performance check. The instrument should read all isotopes for the following elements shown in *Table 1* for the yttrium internal standard (89 amu) and the lutetium internal standard (175 amu), and should report the total element contents using the isotopes. Generate the calibration curve using the *Blank standard* and *Standard solutions* for each element. The linear regression coefficient is NLT 0.99.

Table 1

Element	Isotope (amu)
Chromium	52
Copper	63
Lead	206
Nickel	58
Tin	118

Analysis**Samples:** Blank solution and Sample solutionDetermine the concentration of each element in the *Blank solution* and in the *Sample solution* using the calibration curve.Calculate the quantity, in $\mu\text{g/g}$, of each element in the portion of Medium-Chain Triglycerides taken:

$$\text{Result} = (C_U - C_B)/C_S$$

C_U = concentration of each element in the *Sample solution* ($\mu\text{g/L}$)

C_B = concentration of each element in the *Blank solution* ($\mu\text{g/L}$)

C_S = concentration of Medium-Chain Triglycerides in the *Sample solution* (g/L)

Acceptance criteria: See *Table 2*.**Table 2**

Element	Acceptance Criteria, NMT ($\mu\text{g/g}$)
Chromium	0.05
Copper	0.1
Lead	0.1
Nickel	0.1

• LIMIT OF TIN

[NOTE—Use this test for Medium-Chain Triglycerides intended for use in parenteral nutrition.]

Internal standard solution, Sample solution, Blank solution, Instrumental conditions, System suitability, and Analysis: Proceed as directed in the test for *Limit of Chromium, Copper, Lead, and Nickel*.**Blank standard:** Transfer 1.0 mL of the *Internal standard solution* to a 100-mL volumetric flask, add 10.0 mL of 30% hydrochloric acid, dilute with *water* to volume, and mix.**Standard stock solution:** Transfer 1.0 mL of a solution containing 1000 mg/L of tin [NOTE—Single-element ICP standard solutions are commercially available.⁷] to a 100-mL volumetric flask, add 25.0 mL of 30% hydrochloric acid, dilute with *water* to volume, and mix. [NOTE—Prepare this solution fresh monthly.] Transfer 1.0 mL of this solution to a 100-mL volumetric flask, add 25.0 mL of 30% hydrochloric acid, dilute with *water* to volume, and mix. The concentration of tin in this solution is 100 $\mu\text{g/L}$. [NOTE—Prepare this solution fresh each time.]**Standard solutions:** [NOTE—Prepare these solutions fresh each time.] Into two separate 100-mL volumetric flasks, transfer 1.0 mL and 5.0 mL of the *Standard stock solution*, add 1.0 mL of the *Internal standard solution* and 25.0 mL of 30% hydrochloric acid, dilute with *water* to volume, and mix well. The concentration of tin in these solutions is 1 $\mu\text{g/L}$ and 5 $\mu\text{g/L}$, respectively.

Acceptance criteria: NMT 0.1 µg/g

Change to read:

• **ALKALINE IMPURITIES**

Sample solution: Dissolve 2.0 g of Medium-Chain Triglycerides in a mixture of alcohol and ethyl ether (1.5:3.0).

Analysis: Add 0.05 mL of bromophenol blue TS to the *Sample solution*, and titrate with ▲ 0.01 N hydrochloric acid VS▲ (NF 1-May-2020) to a yellow endpoint.

Acceptance criteria: NMT 0.15 mL of 0.01 N hydrochloric acid ▲VS▲ (NF 1-May-2020) is required.

SPECIFIC TESTS

Delete the following:

▲• FATS AND FIXED OILS (401), Procedures, Unsaponifiable Matter

Sample: 5.0 g

Acceptance criteria: NMT 0.5%▲ (NF 1-May-2020)

• SPECIFIC GRAVITY (841): 0.93–0.96 at 20°

• WATER DETERMINATION (921), Method I: NMT 0.2%

• **APPEARANCE**

Diluent: Hydrochloric acid and water (2.75%:97.25%)

Sample: 10 mL

Standard solution: Prepare immediately before use by mixing 2.4 mL of ferric chloride CS and 0.6 mL of cobaltous chloride CS with *Diluent* to make 10.0 mL, and diluting 5.0 mL of the solution with *Diluent* to make 10.0 mL.

Analysis: Compare the *Sample* and the *Standard solution* by viewing them downward in matched color-comparison tubes against a white surface (see Color and Achromicity (631)).

Acceptance criteria: The *Sample* is clear and not more intensely colored than the *Standard solution*.

• FATS AND FIXED OILS (401), Procedures, Acid Value: NMT 0.2

• FATS AND FIXED OILS (401), Procedures, Fatty Acid Composition: The fatty acid fraction of Medium-Chain Triglycerides exhibits the following composition as seen in Table 3. Disregard any peak with an area less than 0.05% of the total area.

Table 3

Carbon-Chain Length	Number of Double Bonds	Percentage (%)
6	0	≤2.0
8	0	50.0–80.0
10	0	20.0–50.0
12	0	≤3.0
14	0	≤1.0

• FATS AND FIXED OILS (401), Procedures, Hydroxyl Value: NMT 10

• FATS AND FIXED OILS (401), Procedures, Iodine Value: NMT 1.0

• FATS AND FIXED OILS (401), Procedures, Peroxide Value: NMT 1.0

Delete the following:

▲• FATS AND FIXED OILS (401), Procedures, Saponification Value

Sample: 1.0 g

Acceptance criteria: 310–360▲ (NF 1-May-2020)

• VISCOSEY—CAPILLARY METHODS (911)

Analysis: Determine at $20 \pm 0.1^\circ$ with a capillary viscometer.

Acceptance criteria: 25–33 mPa · s

Delete the following:

▲• REFRACTIVE INDEX (831): 1.440–1.452 at 20°▲ (NF 1-May-2020)

• ARTICLES OF BOTANICAL ORIGIN (561), Methods of Analysis, Total Ash

Sample: 2.0 g

Acceptance criteria: NMT 0.1%

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in tight containers, protected from light. Store at temperatures not exceeding 25°.

Change to read:

- **LABELING:** ▲Where Medium-Chain Triglycerides is intended for use in the manufacture of injectable dosage forms or parenteral nutrition therapy, it is so labeled.▲ (NF 1-May-2020)

- 1 A suitable yttrium ICP standard is available from LGC (www.lgcstandards.com) or Millipore Sigma (www.sigmaaldrich.com).
- 2 A suitable lutetium ICP standard is available from LGC (www.lgcstandards.com) or Millipore Sigma (www.sigmaaldrich.com).
- 3 Suitable single-element ICP standards are available from LGC (www.lgcstandards.com) or Millipore Sigma (www.sigmaaldrich.com).
- 4 Suitable ultratrace concentrated sulfuric acid is available from Spectrum Chemicals (www.spectrumchemical.com) or Millipore Sigma (www.sigmaaldrich.com).
- 5 Suitable ultratrace 30% hydrogen peroxide is available from Spectrum Chemicals (www.spectrumchemical.com) or Millipore Sigma (www.sigmaaldrich.com).
- 6 Suitable ultratrace 30% hydrochloric acid is available from Spectrum Chemicals (www.spectrumchemical.com), Millipore Sigma (www.sigmaaldrich.com), WVR (us.vwr.com/store/) or other vendors.
- 7 A suitable tin ICP standard is available from LGC (www.lgcstandards.com) or Millipore Sigma (www.sigmaaldrich.com).

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
MEDIUM-CHAIN TRIGLYCERIDES	Documentary Standards Support	CE2020 Complex Excipients
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	CE2020 Complex Excipients

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 44(6)

Current DocID: GUID-995A5AEA-A8B8-473A-BE2C-94DA0912145B_5_en-US

DOI: https://doi.org/10.31003/USPNF_M85460_05_01

DOI ref: [hi31](#)