

Status: Currently Official on 15-Feb-2025
Official Date: Official as of 01-May-2020
Document Type: USP Monographs
DocId: GUID-B9CCC68E-A152-4561-B94F-097CA866CD8C_2_en-US
DOI: https://doi.org/10.31003/USPNF_M47830_02_01
DOI Ref: rfl3x

© 2025 USPC
Do not distribute

Meclizine Hydrochloride

C₂₅H₂₇ClN₂ · 2HCl · H₂O 481.89

C₂₅H₂₇ClN₂ · 2HCl 463.88

Piperazine, 1-[(4-chlorophenyl)phenylmethyl]-4-[(3-methylphenyl)methyl]-, dihydrochloride, monohydrate;
1-(p-Chloro- α -phenylbenzyl)-4-(m-methylbenzyl)piperazine dihydrochloride monohydrate CAS RN[®]: 31884-77-2; UNII: HDP7W44C1O.
Anhydrous CAS RN[®]: 1104-22-9; UNII: L997QXC9J1.

DEFINITION

Meclizine Hydrochloride contains NLT 97.0% and NMT 102.0% of C₂₅H₂₇ClN₂ · 2HCl, calculated on the anhydrous basis.

IDENTIFICATION

Change to read:

- A. [▲ SPECTROSCOPIC IDENTIFICATION TESTS \(197\), Infrared Spectroscopy: 197K](#) ▲ (CN 1-MAY-2020)
- B. [IDENTIFICATION TESTS—GENERAL, Chloride\(191\)](#).

Sample solution: Dissolve 25 mg in a mixture of 3 mL of 2 N nitric acid and 5 mL of alcohol.

Acceptance criteria: Meets the requirements

ASSAY

• PROCEDURE

Mobile phase: Dissolve 1.5 g of sodium 1-heptanesulfonate in 300 mL of water, and mix this solution with 700 mL of acetonitrile. Adjust with 0.1 N sulfuric acid to a pH of 4.

Standard solution: 0.1 mg/mL of [USP Meclizine Hydrochloride RS](#) in *Mobile phase*

Sample solution: 0.1 mg/mL of Meclizine Hydrochloride in *Mobile phase*

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 230 nm

Column: 4.6-mm \times 25-cm; 5- μ m packing L1

Flow rate: 1.3 mL/min

Injection size: 20 μ L

System suitability

Sample: Standard solution

Suitability requirements

Relative standard deviation: NMT 1.0%

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of meclizine hydrochloride (C₂₅H₂₇ClN₂ · 2HCl) in the portion of Meclizine Hydrochloride taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_u = peak response of meclizine from the *Sample solution*

r_s = peak response of meclizine from the *Standard solution*

C_s = concentration of [USP Meclizine Hydrochloride RS](#) in the *Standard solution* (mg/mL)

C_u = concentration of Meclizine Hydrochloride in the *Sample solution* (mg/mL)**Acceptance criteria:** 97.0%–102.0% on the anhydrous basis**IMPURITIES**

- **RESIDUE ON IGNITION (281):** NMT 0.1%
- **ORGANIC IMPURITIES, PROCEDURE 1**

[NOTE—On the basis of the synthetic route, perform either *Procedure 1* or *Procedure 2*. *Procedure 2* is recommended when the isomeclizine impurity may be present.]

Mobile phase: Dissolve 1.5 g of sodium 1-heptanesulfonate in 300 mL of water, and mix this solution with 700 mL of acetonitrile. Adjust with 0.1 N sulfuric acid to a pH of 4.

System suitability solution: 0.01 mg/mL each of [USP Meclizine Hydrochloride RS](#) and 4-chlorobenzophenone in *Mobile phase*

Standard solution: 2.5 µg/mL of [USP Meclizine Hydrochloride RS](#) in *Mobile phase*

Sample solution: 0.5 mg/mL of Meclizine Hydrochloride in *Mobile phase*

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 230 nm

Column: 4.6-mm × 25-cm; 5-µm packing L1

Flow rate: 1.3 mL/min

Injection size: 20 µL

System suitability

Samples: *System suitability solution* and *Standard solution*

[NOTE—The elution order is meclizine, followed by 4-chlorobenzophenone.]

Suitability requirements

Resolution: NLT 2.0 between meclizine hydrochloride and 4-chlorobenzophenone, *System suitability solution*

Column efficiency: NLT 1800 theoretical plates, determined from the analyte peak, *Standard solution*

Tailing factor: NMT 1.5 for the analyte peak, *Standard solution*

Relative standard deviation: NMT 1.5%, *Standard solution*

Analysis

Samples: *Standard solution* and *Sample solution*

Allow the *Sample solution* to elute for NLT three times the retention time of meclizine hydrochloride.

Calculate the percentage of each impurity in the portion of Meclizine Hydrochloride taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times (1/F) \times 100$$

r_u = peak response of each impurity from the *Sample solution*

r_s = peak response of meclizine from the *Standard solution*

C_s = concentration of [USP Meclizine Hydrochloride RS](#) in the *Standard solution* (mg/mL)

C_u = concentration of Meclizine Hydrochloride in the *Sample solution* (mg/mL)

F = relative response factor, 0.72 for the 4-chlorobenzophenone peak and 1.0 for all other peaks

Acceptance criteria

Any individual impurity: NMT 0.5%

Total impurities: NMT 1.0%

- **ORGANIC IMPURITIES, PROCEDURE 2**

Mobile phase: Dissolve 5 g of sodium 1-heptanesulfonate in 1000 mL of water, and mix 600 mL of this solution with 400 mL of acetonitrile.

Adjust with 0.1 N sulfuric acid to a pH of 4.0 ± 0.1.

System suitability solution: 2.5 µg/mL each of [USP Meclizine Hydrochloride RS](#), [USP Meclizine Related Compound A RS](#), and [USP Meclizine Related Compound B RS](#) in *Mobile phase*

Standard solution: 2.5 µg/mL of [USP Meclizine Hydrochloride RS](#) in *Mobile phase*

Sample solution: 0.5 mg/mL of Meclizine Hydrochloride in *Mobile phase*. [NOTE—Store this solution no longer than 24 h.]

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 210 nm

Column: 4.6-mm × 25-cm; 5-µm packing L1

Column temperature: 50°

Flow rate: 2.0 mL/min

Injection size: 30 µL

System suitability**Samples:** System suitability solution and Standard solution**Suitability requirements****Resolution:** NLT 2.0 between meclizine related compound B and meclizine, System suitability solution**Tailing factor:** NMT 2.0, Standard solution**Relative standard deviation:** NMT 6.0%, Standard solution**Analysis****Samples:** Standard solution and Sample solution

Calculate the percentage of each impurity in the portion of Meclizine Hydrochloride taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times (1/F) \times 100$$

 r_U = peak response of each impurity from the Sample solution r_S = peak response of meclizine from the Standard solution C_S = concentration of [USP Meclizine Hydrochloride RS](#) in the Standard solution (mg/mL) C_U = concentration of Meclizine Hydrochloride in the Sample solution (mg/mL) F = relative response factor (see [Table 1](#))**Acceptance criteria:** See [Table 1](#). Disregard any peak eluting before 1.75 min.**Table 1**

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
3-Methylbenzyl alcohol	0.11	1.0	0.10
1,4-Bis(3-methylbenzyl) piperazine	0.22	0.73	0.10
4-Chlorobenzhydrol ^a	0.53	1.3	0.15
Meclizine o-chloro isomer ^b	0.81	1.0	0.10
Isomeclizine (meclizine o-methyl isomer) ^c	0.90	1.1	0.15
Meclizine	1.0	—	—
Any individual unspecified impurity	—	1.0	0.10
Total impurities	—	—	1.0

^a USP Meclizine Related Compound A.^b 1-[2-Chlorophenyl](phenyl)methyl]-4-(3-methylbenzyl) piperazine.^c USP Meclizine Related Compound B.**SPECIFIC TESTS**

- [WATER DETERMINATION, Method I\(921\)](#): NMT 5.0%

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in tight containers. Store at room temperature.
- **LABELING:** If a test for *Organic Impurities* other than *Procedure 1* is used, the labeling states the test with which the article complies.

[USP REFERENCE STANDARDS \(11\)](#)[USP Meclizine Hydrochloride RS](#)[USP Meclizine Related Compound A RS](#)

4-Chlorobenzhydrol.

 $C_{13}H_{11}ClO$ 218.68

[USP Medicine Related Compound B RS](#)

Isomeclizine

1-[(4-Chlorophenyl)(phenyl)methyl]-4-(2-methylbenzyl)piperazine dihydrochloride monohydrate.

 $C_{25}H_{27}ClN_2 \cdot 2HCl \cdot H_2O$

481.88

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
MECLIZINE HYDROCHLORIDE	Documentary Standards Support	SM32020 Small Molecules 3

Chromatographic Database Information: [Chromatographic Database](#)**Most Recently Appeared In:**

Pharmacopeial Forum: Volume No. PF 37(4)

Current DocID: GUID-B9CCC68E-A152-4561-B94F-097CA866CD8C_2_en-US**DOI: https://doi.org/10.31003/USPNF_M47830_02_01****DOI ref: rf13x**

OFFICIAL