

Status: Currently Official on 15-Feb-2025
Official Date: Official as of 01-May-2020
Document Type: USP Monographs
DocId: GUID-AA51B0A9-B3A2-49BC-8EA8-606C4ABC6985_4_en-US
DOI: https://doi.org/10.31003/USPNF_M47160_04_01
DOI Ref: zg9sm

© 2025 USPC
Do not distribute

Mannitol

Portions of the monograph text that are national *USP* text, and are not part of the harmonized text, are marked with symbols (♦) to specify this fact.

$C_6H_{14}O_6$ 182.17

D-Mannitol CAS RN®: 69-65-8.

DEFINITION

Mannitol contains NLT 97.0% and NMT 102.0% of mannitol ($C_6H_{14}O_6$), calculated on the dried basis.

IDENTIFICATION

Change to read:

- A. ▲ [SPECTROSCOPIC IDENTIFICATION TESTS \(197\), Infrared Spectroscopy: 197K](#) ▲ (CN 1-MAY-2020)

If the spectra shows differences, proceed as directed.

Standard solution: Dissolve 25 mg of [USP Mannitol RS](#) in a glass vial with 0.25 mL of distilled water without heating. The solution is clear.

Evaporate to dryness by one of the following methods. Heat in a microwave oven with a power range of 600–700 W for 20 min, or heat in an oven at 100° for 1 h, then gradually apply vacuum until a dry residue is obtained. Non-sticky, white, or slightly yellowish powders are obtained.

Sample solution: Dissolve 25 mg of Mannitol in a glass vial with 0.25 mL of distilled water without heating. The solution is clear. Evaporate to dryness by one of the following methods. Heat in a microwave oven with a power range of 600–700 W for 20 min, or heat in an oven at 100° for 1 h, then gradually apply vacuum until a dry residue is obtained. Non-sticky, white, or slightly yellowish powders are obtained.

Analysis: Record new spectra using the residues from the *Standard solution* and the *Sample solution*.

ASSAY

• PROCEDURE

Mobile phase: Degassed water

System suitability solution A: 25.0 mg/mL each of sorbitol and [USP Mannitol RS](#)

System suitability solution B: 1.0 mg/mL each of maltitol and isomalt

Standard solution A: 50.0 mg/mL of [USP Mannitol RS](#)

Standard solution B: Dilute 2.0 mL of the *Sample solution* with water to 100.0 mL.

Standard solution C: Dilute 0.5 mL of *Standard solution B* with water to 20.0 mL.

Sample solution: 50.0 mg/mL of Mannitol

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: Refractive index

Column: 7.8-mm × 30-cm; packing L19

Temperatures

Detector: 40° (maintain at a constant temperature)

Column: 85 ± 2°

Flow rate: 0.5 mL/min

Injection volume: 20 µL

Run time: NLT 1.5 times the retention time of the mannitol peak. [NOTE—The retention time for mannitol is about 20 min.]

System suitability

Samples: *System suitability solution A, System suitability solution B, Standard solution B, and Standard solution C*

Suitability requirements

Resolution: NLT 2.0 between sorbitol and mannitol, *System suitability solution A*

Analysis

Samples: Standard solution A and Sample solutionCalculate the percentage of mannitol ($C_6H_{14}O_6$) in the portion of Mannitol taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

 r_u = peak response from the Sample solution r_s = peak response from Standard solution A C_s = concentration of [USP Mannitol RS](#) in Standard solution A (mg/mL) C_u = concentration of the Sample solution (mg/mL)**Acceptance criteria:** 97.0%–102.0% on the dried basis**IMPURITIES**• **RELATED SUBSTANCES****Mobile phase, System suitability solution A, System suitability solution B, Standard solution B, Standard solution C, Sample solution,****Chromatographic system, and System suitability:** Proceed as directed in the Assay.**Analysis****Samples:** Standard solution B, Standard solution C, and Sample solution**Acceptance criteria:** See [Table 1](#) for the relative retention times.**Table 1**

Name	Relative Retention Time
Isomalt (1st peak)	0.60
Maltitol	0.69
Isomalt (2nd peak)	0.73
Mannitol	1.0
Sorbitol	1.2

[NOTE—Impurity A—Sorbitol; Impurity B—Maltitol; Impurity C—Isomalt.]

[NOTE—Isomalt elutes in two peaks.]

[NOTE—Coelution of impurity B and the second peak of impurity C may be observed.]

Disregard limit: NMT 0.05%; any peak NMT the area of the principal peak obtained with Standard solution C**Sorbitol:** NMT 2.0%; NMT the area of the principal peak obtained with Standard solution B**Sum of isomalt and maltitol:** NMT 2.0%; NMT the area of the principal peak obtained with Standard solution B**Unspecified impurities:** NMT 0.10% for each impurity; NMT twice the area of the principal peak obtained with Standard solution C**Total impurities:** NMT 2.0%; NMT the area of the principal peak obtained with Standard solution B• **REDUCING SUGARS****Ferric sulfate solution:** Dissolve 50 g of [ferric sulfate](#) in an excess of water, add 200 mL of [sulfuric acid](#), and dilute with water to 1000 mL.**Copper sulfate solution:** 69.2 mg/mL of [copper sulfate](#) ($CuSO_4 \cdot 5H_2O$) in water**Sodium potassium tartrate solution:** Dissolve 173 g of [sodium potassium tartrate](#) ($C_4H_4KNaO_6 \cdot 4H_2O$) and 50 g of [sodium hydroxide](#) in 400 mL of water. Heat to boiling, allow to cool, and dilute with carbon dioxide-free water to 500 mL.**Cupri-tartaric solution:** Mix equal volumes of [Copper sulfate solution](#) and [Sodium potassium tartrate solution](#) immediately before use.**Sample:** 7.0 g**Analysis:** To the Sample add 13 mL of water. Boil gently with 40 mL of [Cupri-tartaric solution](#) for 3 min, and allow to stand for about 2 min. A precipitate is formed. Pass through a sintered-glass filter (10–16 μ m) coated with diatomaceous earth or a sintered-glass filter (5–10 μ m). Wash the precipitate with hot water (at about 50°–60°) until the washing is no longer alkaline, and pass the washings through the filter described above. Discard all the filtrate at this step. Immediately dissolve the precipitate in 20 mL of [Ferric sulfate solution](#), pass through the filter described above in a clean flask, and wash the filter with 15–20 mL of water. Combine the washings and the filtrate, heat to 80°, and titrate with [0.02 M potassium permanganate VS](#).**Acceptance criteria:** NMT 0.1%, expressed as glucose; NMT 3.2 mL of [0.02 M potassium permanganate VS](#) is required to change the color of the solution. The green color turns to pink, and the color persists at least 10 s.• **NICKEL**

Sample solution: Suspend 10.0 g of Mannitol in 30 mL of dilute acetic acid [115–125 g/L of acetic acid ($C_2H_4O_2$)], add water, and shake to dissolve. Dilute with water to 100.0 mL. Add 2.0 mL of a [saturated solution of ammonium pyrrolidinedithiocarbamate](#) ($C_5H_{12}N_2S_2$) (about 10 g/L) and 10.0 mL of water-saturated [methyl isobutyl ketone](#) ($C_6H_{12}O$, 4-methyl-2-pentanone), and then shake for 30 s protected from bright light. Allow the layers to separate, and use the methyl isobutyl ketone layer.

Blank solution: Treat water-saturated [methyl isobutyl ketone](#) as described for preparation of the *Sample solution*, omitting the mannitol.

Standard solutions: Prepare three reference solutions in the same manner as the *Sample solution* but adding 0.5, 1.0, and 1.5 mL, respectively, of [nickel standard solution TS](#) [10 ppm nickel (Ni)] in addition to the 10.0 g of the substance to be examined.

Instrumental conditions

(See [Atomic Absorption Spectroscopy \(852\)](#).)

Mode: Atomic absorption spectrophotometry

Analytical wavelength: 232.0 nm

Lamp: Nickel hollow-cathode

Flame: Air–acetylene

Analysis

Samples: *Sample solution* and *Standard solutions*

Set the zero of the instrument using the blank. Record the average of the steady readings for each of the *Standard solutions* and the *Sample solution*. Between each measurement rinse with water, and ascertain that the reading returns to zero with the blank. Plot the absorbances of the *Standard solutions* and the *Sample solution* versus the added quantity of nickel. Extrapolate the line joining the points on the graph until it meets the concentration axis. The distance between this point and the intersection of the axes represents the concentration of nickel in the *Sample solution*.

Acceptance criteria: NMT 1 μ g/g

SPECIFIC TESTS

- [MELTING RANGE OR TEMPERATURE \(741\), Class I](#)

Melting point: 165°–170°

- [APPEARANCE OF SOLUTION](#)

Hydrazine sulfate solution: 10.0 mg/mL of [hydrazine sulfate](#). Allow to stand for 4–6 h.

Methenamine solution: 2.5 g of [methenamine](#) in 25 mL of water, in a ground-glass-stoppered flask

Primary opalescent suspension: To the *Methenamine solution*, add 25.0 mL of the *Hydrazine sulfate solution*. Mix, and allow to stand for 24 h.

This suspension is stable for 2 months, provided it is stored in a glass container free from surface defects. The suspension must not adhere to the glass and must be well mixed before use.

Opalescence standard: Dilute 15.0 mL of the *Primary opalescent suspension* with water to 1000.0 mL. This suspension is freshly prepared and may be stored for up to 24 h.

Reference suspension: To 5.0 mL of *Opalescence standard* add 95.0 mL of water. Mix, and shake before use.

Standard solution: Pipet 3.0 mL of [ferric chloride CS](#), 3.0 mL of [cobaltous chloride CS](#), and 2.4 mL of [cupric sulfate CS](#) into a 1-L volumetric flask. Dilute with 1% (w/v) [hydrochloric acid](#) to volume.

Sample solution: 100.0 mg/mL of Mannitol

Analysis: Compare the color, clarity, and opalescence of equal volumes of the *Reference suspension*, *Standard solution*, and *Sample solution*.

Acceptance criteria: The *Sample solution* is clear and colorless; its clarity is the same as that of water, or its opalescence is not more pronounced than that of the *Reference suspension*, and it is not more intensely colored than the *Standard solution*.

- [LOSS ON DRYING \(731\)](#)

Sample: 1.000 g

Analysis: Dry the *Sample* at 105° for 4 h.

Acceptance criteria: NMT 0.5%

- [CONDUCTIVITY](#)

Sample: 20.0 g

Analysis: Dissolve the *Sample* in [carbon dioxide-free water](#) prepared from distilled water by heating to 40°–50°, and dilute with the same solvent to 100 mL. After cooling, measure the conductivity of the solution while gently stirring with a magnetic stirrer.

Acceptance criteria: NMT 20 μ S/cm at 25°

• [MICROBIAL ENUMERATION TESTS \(61\)](#) and [TESTS FOR SPECIFIED MICROORGANISMS \(62\)](#): The total aerobic microbial count (TAMC) is NMT 10^3 cfu/g, and the total combined molds and yeasts count is NMT 10^2 cfu/g. It meets the requirements of the test for absence of *Escherichia coli*.

If intended for use in the manufacture of parenteral dosage forms, the TAMC is NMT 10^2 cfu/g.

• [BACTERIAL ENDOTOXINS TEST \(85\)](#): If intended for use in the manufacture of parenteral dosage forms without a further appropriate procedure for the removal of bacterial endotoxins, less than 4 IU/g for parenteral dosage forms with a concentration of 100 g/L or less of mannitol, and less than 2.5 IU/g for parenteral dosage forms with a concentration of more than 100 g/L of mannitol

ADDITIONAL REQUIREMENTS

- [PACKAGING AND STORAGE](#): Preserve in well-closed containers.

- [LABELING](#)

The label states, where applicable, the maximum concentration of bacterial endotoxins.

The label states, where applicable, that the substance is suitable for use in the manufacture of parenteral dosage forms.

- [USP REFERENCE STANDARDS \(11\)](#)

[USP Mannitol RS](#)

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
MANNITOL	Documentary Standards Support	SE2020 Simple Excipients

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 41(5)

Current DocID: [GUID-AA51B0A9-B3A2-49BC-8EA8-606C4ABC6985_4_en-US](#)

DOI: https://doi.org/10.31003/USPNF_M47160_04_01

DOI ref: [zg9sm](#)

OFFICIAL