

Status: Currently Official on 18-Feb-2025
Official Date: Official as of 01-Jun-2023
Document Type: NF Monographs
DocId: GUID-77B44933-C260-4150-9E47-9510D745EBAC_6_en-US
DOI: https://doi.org/10.31003/USPNF_M442_06_01
DOI Ref: bv42z

© 2025 USPC
Do not distribute

Maleic Acid

$C_4H_4O_4$ 116.07

(Z)-Butenedioic acid;

cis-Butenedioic acid CAS RN®: 110-16-7.

DEFINITION

Maleic Acid contains NLT 98.0% and NMT 102.0% of maleic acid ($C_4H_4O_4$), calculated on the anhydrous basis.

IDENTIFICATION

- A. [SPECTROSCOPIC IDENTIFICATION TESTS \(197\), Infrared Spectroscopy: 197K](#)
- B. The retention time of the maleic acid peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.

ASSAY

• PROCEDURE

Solution A: 10 mM [potassium phosphate](#) buffer, adjusted with [phosphoric acid](#) to a pH of 2.3

Solution B: [Acetonitrile](#) and *Solution A* (55:45)

Mobile phase: See [Table 1](#).

Table 1

Time (min)	Solution A (%)	Solution B (%)
0.0	99	1
8.0	95	5
22.0	55	45
27.0	55	45

Return to original conditions and re-equilibrate the system.

Diluent: [Acetonitrile](#) and *Solution A* (2:98)

System suitability solution: 50 µg/mL of [USP Fumaric Acid RS](#) and 200 µg/mL each of [USP Lactic Acid RS](#), [USP Glacial Acetic Acid RS](#), and [USP Succinic Acid RS](#) in *Diluent*

Standard solution: 50 µg/mL of [USP Maleic Acid RS](#) in *Diluent*

Sample solution: 50 µg/mL of Maleic Acid in *Diluent*

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 210 nm

Column: 4.6-mm × 15-cm; 3-µm packing [L1](#)

Flow rate: 0.8 mL/min

Injection volume: 10 µL

System suitability

Samples: *System suitability solution* and *Standard solution*

[**NOTE**—The relative retention times for lactic acid, acetic acid, succinic acid, and fumaric acid are about 0.5, 0.6, 0.9, and 1.0, respectively.]

Suitability requirements

Resolution: NLT 2.0 between the lactic acid and acetic acid peaks; NLT 3.0 between the succinic acid and fumaric acid peaks, System suitability solution

Tailing factor: NMT 1.5, Standard solution

Relative standard deviation: NMT 1.0%, Standard solution

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of maleic acid in the portion of Maleic Acid taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_u = peak area of maleic acid from the Sample solution

r_s = peak area of maleic acid from the Standard solution

C_s = concentration of [USP Maleic Acid RS](#) in the Standard solution (μg/mL)

C_u = concentration of Maleic Acid in the Sample solution (μg/mL)

Acceptance criteria: 98.0%–102.0% on the anhydrous basis

IMPURITIES

- [RESIDUE ON IGNITION \(281\)](#): NMT 0.1%, determined on a 1.0-g portion

Change to read:

- [LIMIT OF IRON](#)

Solution A: Dissolve 9.7 g of potassium thiocyanate in 100 mL of water.

Diluted standard iron solution: Immediately before use, dilute 1 volume of *Standard Iron Solution*, prepared as directed in [▲ Iron \(241\)](#).

[Procedures, Procedure 1](#) ▲ (CN 1-Jun-2023), with 9 volumes of water. [Note—This solution contains the equivalent of 1 μg/mL of iron.]

Standard solution: Add 6 mL of water to 5 mL of *Diluted standard iron solution*. Add 1 mL of diluted hydrochloric acid and 0.05 mL of bromine TS. After 5 min, remove the excess of bromine with the aid of a current of air, add 3 mL of *Solution A*, and shake well.

Sample solution: Dissolve 1 g of Maleic Acid in 10 mL of water. Add 2 mL of diluted hydrochloric acid and 0.05 mL of bromine TS. After 5 min, remove the excess of bromine with the aid of a current of air, add 3 mL of *Solution A*, and shake well.

Analysis: Allow the *Standard solution* and *Sample solution* to stand for 5 min.

Acceptance criteria: Any red color in the *Sample solution* is not more intense than that in the *Standard solution* (NMT 5 ppm).

- [LIMIT OF FUMARIC ACID AND MALIC ACID](#)

Solution A, Solution B, Mobile phase, Diluent, System suitability solution, and Chromatographic system: Proceed as directed in the Assay.

Standard solution: 50 μg/mL of [USP Fumaric Acid RS](#) and 25 μg/mL of [USP Malic Acid RS](#)

Sample solution: 5 mg/mL of Maleic Acid in *Diluent*

System suitability

Samples: System suitability solution and Standard solution

[Note—The relative retention times for lactic acid, acetic acid, succinic acid, and fumaric acid are about 0.5, 0.6, 0.9, and 1.0, respectively.]

Suitability requirements

Resolution: NLT 2.0 between the lactic acid and acetic acid peaks; NLT 3.0 between the succinic acid and fumaric acid peaks, System suitability solution

Tailing factor: NMT 1.5 for malic acid and fumaric acid, Standard solution

Relative standard deviation: NMT 3.0% for the malic acid and fumaric acid peaks, Standard solution

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of fumaric acid or malic acid in the portion of Maleic Acid taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times F \times 100$$

r_u = peak area of fumaric acid or malic acid from the Sample solution

r_s = peak area of fumaric acid or malic acid from the Standard solution

C_s = concentration of [USP Fumaric Acid RS](#) or [USP Malic Acid RS](#) in the Standard solution (μg/mL)

C_u = concentration of Maleic Acid in the Sample solution (mg/mL)

F = conversion factor, 0.001 mg/μg

Acceptance criteria

Fumaric acid: NMT 1.0%

Malic acid: NMT 0.5%

SPECIFIC TESTS

- [WATER DETERMINATION, Method I \(921\)](#): NMT 0.5%

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in tight glass containers, protected from light. Store at room temperature.
- **LABELING:** Where Maleic Acid is intended for use in the manufacture of injectable dosage forms, it is so labeled. Where Maleic Acid must be subjected to further processing during the preparation of injectable dosage forms to ensure acceptable levels of bacterial endotoxins, it is so labeled.

• [USP REFERENCE STANDARDS \(11\)](#)

[USP Fumaric Acid RS](#)
[USP Glacial Acetic Acid RS](#)
[USP Lactic Acid RS](#)
[USP Maleic Acid RS](#)
[USP Malic Acid RS](#)
[USP Succinic Acid RS](#)

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
MALEIC ACID	Documentary Standards Support	SE2020 Simple Excipients
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SE2020 Simple Excipients

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 43(5)

Current DocID: [GUID-77B44933-C260-4150-9E47-9510D745EBAC_6_en-US](#)

DOI: https://doi.org/10.31003/USPNF_M442_06_01

DOI ref: [bv42z](#)