

Status: Currently Official on 15-Feb-2025
Official Date: Official as of 01-Jun-2023
Document Type: USP Monographs
DocId: GUID-AD7A2BD0-E3F9-4744-83ED-8CF0D88F8471_6_en-US
DOI: https://doi.org/10.31003/USPNF_M47080_06_01
DOI Ref: j4u9n

© 2025 USPC
Do not distribute

Magnesium Trisilicate

$2\text{MgO} \cdot 3\text{SiO}_2 \cdot x\text{H}_2\text{O}$ (anhydrous) 260.86

Silicic acid ($\text{H}_4\text{Si}_3\text{O}_8$), magnesium salt (1:2), hydrate;

Magnesium silicate hydrate ($\text{Mg}_2\text{Si}_3\text{O}_8 \cdot x\text{H}_2\text{O}$) CAS RN®: 39365-87-2; UNII: C2E1CI501T.

Anhydrous CAS RN®: 14987-04-3; UNII: FML8G1U0Y3.

DEFINITION

Magnesium Trisilicate is a compound of Magnesium Oxide and silicon dioxide with varying proportions of water. It contains NLT 20.0% of magnesium oxide (MgO) and NLT 45.0% of silicon dioxide (SiO_2).

IDENTIFICATION

• A. [IDENTIFICATION TESTS—GENERAL \(191\), Chemical Identification Tests, Magnesium](#)

Sample solution: Mix 500 mg of Magnesium Trisilicate with 10 mL of 3 N [hydrochloric acid](#), filter, and neutralize the filtrate to litmus paper with [6 N ammonium hydroxide](#).

Acceptance criteria: Meets the requirements

• B.

Analysis: Prepare a bead by fusing a few crystals of [sodium ammonium phosphate](#) on a platinum loop in the flame of a Bunsen burner. Place the hot, transparent bead in contact with Magnesium Trisilicate, and again fuse.

Acceptance criteria: Silica floats about in the bead, producing, upon cooling, an opaque bead with a web-like structure.

ASSAY

• **CONTENT OF MAGNESIUM OXIDE**

Sample: 1.5 g of Magnesium Trisilicate

Titrimetric system

Mode: Residual titration

Titrant: [1 N sodium hydroxide VS](#)

Endpoint detection: Visual

Analysis: Transfer the **Sample** to a 250-mL conical flask. Add 50.0 mL of [1 N sulfuric acid VS](#), and digest on a steam bath for 1 h. Cool to room temperature, add [methyl orange TS](#), and titrate the excess acid with the **Titrant**. Each milliliter of 1 N sulfuric acid is equivalent to 20.15 mg of magnesium oxide (MgO).

Acceptance criteria: NLT 20.0%

• **CONTENT OF SILICON DIOXIDE**

Sample: 700 mg of Magnesium Trisilicate

Analysis: Transfer the **Sample** to a small platinum dish. Add 10 mL of 1 N [sulfuric acid](#), and heat on a steam bath to dryness, leaving the dish uncovered. Treat the residue with 25 mL of [water](#), and digest on a steam bath for 15 min. Decant the supernatant through an ashless filter paper, with the aid of suction, and wash the residue, by decantation, three times with hot [water](#), passing the washings through the filter paper. Finally transfer the residue to the filter, and wash thoroughly with hot [water](#). Transfer the filter paper and its contents to the platinum dish previously used. Heat to dryness, incinerate, ignite strongly for 30 min, cool, and weigh. Moisten the residue with [water](#), and add 6 mL of [hydrofluoric acid](#) and 3 drops of [sulfuric acid](#). Evaporate to dryness, ignite for 5 min, cool, and weigh. [NOTE—The loss in weight represents the weight of silicon dioxide (SiO_2).

Acceptance criteria: NLT 45.0%

• **RATIO OF SILICON DIOXIDE TO MAGNESIUM OXIDE**

Analysis: Divide the percentage of silicon dioxide (SiO_2) obtained in the Assay for **Content of Silicon Dioxide** by the percentage of magnesium oxide (MgO) obtained in the Assay for **Content of Magnesium Oxide**.

Acceptance criteria: 2.10–2.37

IMPURITIES

• **SOLUBLE SALTS**

Sample solution: Boil 10.0 g of Magnesium Trisilicate with 150 mL of [water](#) for 15 min. Cool to room temperature, allow the mixture to stand for 15 min, filter with the aid of suction, transfer the filtrate to a 200-mL volumetric flask, and dilute with [water](#) to volume.

Analysis: Evaporate 50.0 mL of the *Sample solution*, representing 2.5 g of Magnesium Trisilicate, in a tared platinum dish to dryness, and ignite gently to constant weight.

[**NOTE**—Keep the remaining *Sample solution* for use in the tests for *Chloride* and *Free Alkali* and the residue for use in the test for *Sulfate*.]

Acceptance criteria: NMT 38.0 mg (1.5%) of residue remains.

• [CHLORIDE AND SULFATE \(221\), Chloride](#)

Standard solution: [0.020 N hydrochloric acid VS](#)

Sample solution: 20 mL of the *Sample solution* from the test for *Soluble Salts*, equivalent to 1 g of Magnesium Trisilicate

Acceptance criteria: The *Sample solution* shows no more chloride than 0.75 mL of the *Standard solution* (0.055%).

• [SULFATE](#)

Sample: Residue obtained in the test for *Soluble Salts*.

Analysis: Add 2 mL of [hydrofluoric acid](#) to the *Sample*, and evaporate on a steam bath to dryness. Mix the residue with [water](#), transfer to a filter, and wash, using approximately 50 mL of [water](#) for the complete procedure. Heat the filtrate to boiling, and add 0.1 mL of [hydrochloric acid](#) and 5 mL of [barium chloride TS](#). Maintain the mixture near its boiling point for 1 h, filter, wash the precipitate thoroughly with [water](#), dry, and ignite to constant weight.

Acceptance criteria: NMT 30 mg (0.5%) of residue remains

• [FREE ALKALI](#)

Sample solution: 20 mL of the *Sample solution* from the test for *Soluble Salts*, equivalent to 1 g of Magnesium Trisilicate

Analysis: Add 2 drops of [phenolphthalein TS](#) to the *Sample solution*.

Acceptance criteria: If a pink color is produced, NMT 1.0 mL of 0.10 N [hydrochloric acid](#) is required to discharge it.

Change to read:

• ▲ [ARSENIC \(211\), Procedures, Procedure 1](#) ▲ (CN 1-JUN-2023) : NMT 8 ppm

SPECIFIC TESTS

• [WATER DETERMINATION \(921\), Method III](#)

Sample: 1 g of Magnesium Trisilicate

Analysis: Weigh the *Sample* in a tared platinum crucible provided with a cover. Gradually apply heat to the crucible at first, then strongly ignite to constant weight.

Acceptance criteria: 17.0%–34.0%

• [ACID-CONSUMING CAPACITY](#)

Sample solution: Transfer 200 mg of Magnesium Trisilicate into a glass-stoppered, 125-mL conical flask. Add 30.0 mL of [0.1 N hydrochloric acid VS](#) and 20.0 mL of [water](#). Place the flask in a bath maintained at 37°, and shake the mixture occasionally during a period of 4 h but leave the mixture undisturbed during the last 15 min of the heating period. Cool to room temperature, and use the supernatant.

Titrimetric system

Mode: Residual titration

Titrant: [0.1 N sodium hydroxide VS](#)

Endpoint detection: Visual

Analysis: To 25.0 mL of the *Sample solution*, add [methyl red TS](#), and titrate the excess acid with the *Titrant*.

Acceptance criteria: 140–160 mL of [0.1 N hydrochloric acid VS](#) is consumed per gram of Magnesium Trisilicate, calculated on the anhydrous basis.

ADDITIONAL REQUIREMENTS

• **PACKAGING AND STORAGE:** Preserve in tight containers.

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
MAGNESIUM TRISILICATE	Documentary Standards Support	SM32020 Small Molecules 3

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 44(2)

Current DocID: [GUID-AD7A2BD0-E3F9-4744-83ED-8CF0D88F8471_6_en-US](#)

DOI: https://doi.org/10.31003/USPNF_M47080_06_01

DOI ref: [j4u9n](#)