

Status: Currently Official on 15-Feb-2025
Official Date: Official as of 01-May-2020
Document Type: USP Monographs
DocId: GUID-EB58E31D-9262-4151-9264-73E7C9A8FEC9_4_en-US
DOI: https://doi.org/10.31003/USPNF_M46940_04_01
DOI Ref: rf7gr

© 2025 USPC
Do not distribute

Magnesium Salicylate

$C_{14}H_{10}MgO_6 \cdot 4H_2O$ 370.59

$C_{14}H_{10}MgO_6$ 298.54

Magnesium, bis(2-hydroxybenzoato- O^1, O^2)-, tetrahydrate;

Magnesium salicylate (1:2), tetrahydrate CAS RN®: 18917-95-8; UNII: 41728CY7UX.

Anhydrous CAS RN®: 18917-89-0; UNII: JQ69D454N1.

DEFINITION

Magnesium Salicylate contains NLT 98.0% and NMT 103.0% of magnesium salicylate ($C_{14}H_{10}MgO_6 \cdot 4H_2O$).

IDENTIFICATION

Change to read:

- A. ▲[SPECTROSCOPIC IDENTIFICATION TESTS \(197\), Infrared Spectroscopy: 197K](#)▲ (CN 1-MAY-2020)
- B. The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.
- C. [IDENTIFICATION TESTS—GENERAL, Magnesium \(191\)](#): Meets the requirements

ASSAY

• PROCEDURE

Mobile phase: Methanol, phosphoric acid, and water (40:0.1:60), prepared by adding 1 mL of phosphoric acid to a solution containing 400 mL of methanol and 600 mL of water

Standard solution: 0.5 mg/mL of [USP Magnesium Salicylate RS](#), in *Mobile phase*

Sample solution: 0.5 mg/mL of Magnesium Salicylate, in *Mobile phase*

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 236 nm

Column: 4.6-mm × 10-cm; 5-μm packing L1

Flow rate: 1 mL/min

Injection volume: 10 μL

System suitability

Sample: *Standard solution*

Suitability requirements

Tailing factor: NMT 1.5

Relative standard deviation: NMT 1.10%

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of magnesium salicylate ($C_{14}H_{10}MgO_6 \cdot 4H_2O$) in the portion of Magnesium Salicylate taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_u = peak response from the *Sample solution*

r_s = peak response from the *Standard solution*

C_s = concentration of [USP Magnesium Salicylate RS](#) in the *Standard solution* (mg/mL)

C_u = concentration of Magnesium Salicylate in the *Sample solution* (mg/mL)

IMPURITIES**• ORGANIC IMPURITIES**

Mobile phase: Methanol, phosphoric acid, and water (40:0.1:60), prepared by adding 1 mL of phosphoric acid to a solution containing 400 mL of methanol and 600 mL of water

Standard stock solution: 0.25 mg/mL of [USP Magnesium Salicylate RS](#), 0.25 mg/mL of [USP Salicylic Acid Related Compound A RS](#), 0.125 mg/mL of [USP Salicylic Acid Related Compound B RS](#), and 0.05 mg/mL of [USP Phenol RS](#), in *Mobile phase*

Standard solution: 0.005 mg/mL of [USP Magnesium Salicylate RS](#), 0.005 mg/mL of [USP Salicylic Acid Related Compound A RS](#), 0.0025 mg/mL of [USP Salicylic Acid Related Compound B RS](#), and 0.001 mg/mL of [USP Phenol RS](#), in *Mobile phase* prepared from *Standard stock solution*

Sample solution: 5 mg/mL of Magnesium Salicylate, in *Mobile phase*

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 212 nm

Column: 4.6-mm × 10-cm; 5-μm packing L1

Flow rate: 1 mL/min

Injection volume: 10 μL

System suitability

Sample: *Standard solution*

Suitability requirements

Resolution: NLT 2.0 between any two peaks

Relative standard deviation: NMT 3% for each peak

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of salicylic acid related compound A, salicylic acid related compound B, and phenol in the portion of Magnesium Salicylate taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

r_U = peak response of salicylic acid related compound A, salicylic acid related compound B, or phenol from the *Sample solution*

r_S = peak response of salicylic acid related compound A, salicylic acid related compound B, or phenol from the *Standard solution*

C_S = concentration of [USP Salicylic Acid Related Compound A RS](#), [USP Salicylic Acid Related Compound B RS](#), or [USP Phenol RS](#) in the *Standard solution* (mg/mL)

C_U = concentration of Magnesium Salicylate in the *Sample solution* (mg/mL)

Calculate the percentage of any other individual impurity in the portion of Magnesium Salicylate taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

r_U = peak response of any other individual impurity from the *Sample solution*

r_S = peak response of salicylic acid related compound B from the *Standard solution*

C_S = concentration of [USP Salicylic Acid Related Compound B RS](#) in the *Standard solution* (mg/mL)

C_U = concentration of Magnesium Salicylate in the *Sample solution* (mg/mL)

Acceptance criteria: See [Table 1](#).

Table 1

Name	Relative Retention Time	Acceptance Criteria, NMT (%)
Salicylic acid related compound A	0.3	0.1
Phenol	0.4	0.02
Salicylic acid related compound B	0.6	0.05

Name	Relative Retention Time	Acceptance Criteria, NMT (%)
Salicylic acid	1.0	—
Any other individual impurity	—	0.05
Total impurities	—	0.2

SPECIFIC TESTS**• MAGNESIUM CONTENT**

Sample solution: Transfer 800 mg of Magnesium Salicylate to a 200-mL volumetric flask. Dissolve in and dilute with water to volume. Stir the solution continuously for 15 min, and filter, discarding the first 10 mL of the filtrate, into a flask.

Titrimetric system

Mode: Direct titration

Titrant: 0.05 M edetate disodium VS

Endpoint detection: Visual

Analysis: Transfer 50.0 mL of the *Sample solution* to a 250-mL conical flask. Add 50 mL of water, 5 mL of ammonia–ammonium chloride buffer TS, and 0.15 mL of eriochrome black TS. Titrate with *Titrant* to a blue endpoint. Each mL of *Titrant* is equivalent to 1.215 mg of magnesium.

Acceptance criteria: 6.3%–6.7% of magnesium

• WATER DETERMINATION, Method I (921): 17.5%–21.0%**ADDITIONAL REQUIREMENTS****• PACKAGING AND STORAGE:** Store in tight containers at controlled room temperature.**• USP REFERENCE STANDARDS (11):**

[USP Magnesium Salicylate RS](#)

[USP Phenol RS](#)

[USP Salicylic Acid Related Compound A RS](#)

4-Hydroxybenzoic acid.

C7H6O3 138.12

[USP Salicylic Acid Related Compound B RS](#)

4-Hydroxyisophthalic acid.

C8H6O5 182.13

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
MAGNESIUM SALICYLATE	Documentary Standards Support	SM22020 Small Molecules 2

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 40(1)

Current DocID: [GUID-EB58E31D-9262-4151-9264-73E7C9A8FEC9_4_en-US](#)

DOI: https://doi.org/10.31003/USPNF_M46940_04_01

DOI ref: [rf7gr](#)