

Status: Currently Official on 18-Feb-2025
Official Date: Official as of 01-Jun-2023
Document Type: USP Monographs
DocId: GUID-6CDF7132-D059-43B2-8E31-70CBB21A961B_4_en-US
DOI: https://doi.org/10.31003/USPNF_M46710_04_01
DOI Ref: 9x9sx

© 2025 USPC
Do not distribute

Magnesium Chloride

$\text{MgCl}_2 \cdot 6\text{H}_2\text{O}$ 203.30

Magnesium chloride, hexahydrate CAS RN®: 7791-18-6; UNII: 02F3473H90.

Anhydrous 95.21 CAS RN®: 7786-30-3; UNII: 59XN63C8VM.

DEFINITION

Magnesium Chloride contains NLT 98.0% and NMT 101.0% of $\text{MgCl}_2 \cdot 6\text{H}_2\text{O}$.

IDENTIFICATION

• A. [IDENTIFICATION TESTS—GENERAL, Magnesium\(191\)](#).

Sample solution: 50 mg/mL

• B. [IDENTIFICATION TESTS—GENERAL, Chloride\(191\)](#).

Sample solution: 50 mg/mL

[NOTE—Acidify the *Sample solution* with diluted nitric acid before adding 6 N ammonium hydroxide.]

ASSAY

• PROCEDURE

Sample: 450 mg

Analysis: Dissolve the *Sample* in 25 mL of water, add 5 mL of ammonia–ammonium chloride buffer TS and 0.1 mL of eriochrome black TS, and titrate with 0.05 M edetate disodium VS to a blue endpoint. Each mL of 0.05 M disodium edetate is equivalent to 10.17 mg of $\text{MgCl}_2 \cdot 6\text{H}_2\text{O}$.

Acceptance criteria: 98.0%–101.0%

IMPURITIES

• INSOLUBLE MATTER

Sample: 20 g

Analysis: Dissolve the *Sample* in 200 mL of water, heat to boiling, and digest in a covered beaker on a steam bath for 1 h. Filter through a tared filtering crucible, wash thoroughly, dry at 115°, and determine the weight of the residue.

Acceptance criteria: NMT 0.005%

• [CHLORIDE AND SULFATE, Sulfate\(221\)](#).

Sample: 10 g

Acceptance criteria: It shows no more sulfate than corresponds to 0.50 mL of 0.020 N sulfuric acid (0.005%).

• BARIUM

Sample: 1 g

Analysis: Dissolve the *Sample* in 10 mL of water, and add 1 mL of 2 N sulfuric acid.

Acceptance criteria: No turbidity is produced within 2 h.

• LIMIT OF CALCIUM

[NOTE—A commercially available atomic absorption standard solution for calcium may be used where preparation of a calcium standard stock solution is described below. Concentrations of the *Standard solutions* and the *Sample solution* may be modified to fit the linear or working range of the instrument.]

Dilute hydrochloric acid: Dilute 100 mL of hydrochloric acid with water to 1000 mL.

Lanthanum solution: To 58.65 g of lanthanum oxide add 400 mL of water, and add, gradually with stirring, 250 mL of hydrochloric acid. Stir until dissolved, and dilute with water to 1000 mL.

Standard solutions: Transfer 249.7 mg of calcium carbonate, previously dried at 300° for 3 h and cooled in a desiccator for 2 h, to a 100-mL volumetric flask. Dissolve in a minimum amount of hydrochloric acid, and dilute with water to volume. Transfer 1.0, 5.0, 10.0, and 15.0 mL of this stock solution to separate 1000-mL volumetric flasks, each containing 20 mL of *Lanthanum solution* and 40 mL of *Dilute hydrochloric acid*. Dilute with water to volume. These *Standard solutions* contain 1.0, 5.0, 10.0, and 15.0 µg/mL of calcium, respectively.

Blank solution: Transfer 4 mL of *Lanthanum solution* and 10 mL of *Dilute hydrochloric acid* to a 200-mL volumetric flask, and dilute with water to volume.

Sample solution: Transfer 10.0 g of Magnesium Chloride to a 200-mL volumetric flask, and add water to dissolve. Add 4 mL of *Lanthanum solution*, and dilute with water to volume.

Instrumental conditions

(See [Atomic Absorption Spectroscopy \(852\).](#))**Mode:** Atomic absorption spectrophotometry**Lamp:** Calcium hollow-cathode**Flame:** Nitrous oxide-acetylene**Analytical wavelength:** Calcium emission line at 422.7 nm**Analysis****Samples:** Standard solutions, Blank solution, and Sample solution.Determine the concentration, C, in $\mu\text{g/mL}$, of calcium in the Sample solution using the calibration graph.

Calculate the percentage of calcium in the portion of Magnesium Chloride taken:

$$\text{Result} = (V/W \times C \times F) \times 100$$

V = volume of the Sample solution (mL)

W = weight of Magnesium Chloride taken (mg)

C = as defined above

F = conversion factor from $\mu\text{g/mL}$ to mg/mL, 0.001**Acceptance criteria:** NMT 0.01%• **POTASSIUM****Sample solution:** 5 g**Analysis:** Dissolve the Sample in 5 mL of water, and add 0.2 mL of sodium bitartrate TS.**Acceptance criteria:** No turbidity is produced within 5 min.**Change to read:**

- [▲ ALUMINUM \(206\), Procedure 1 ▲ \(CN 1-JUN-2023\)](#) (where it is labeled as intended for use in hemodialysis)

Test preparation: Prepare as directed in the chapter, using 2.0 g.**Acceptance criteria:** NMT 1 ppm**SPECIFIC TESTS**• [pH \(791\)](#)**Sample solution:** 50 mg/mL in carbon dioxide-free water**Acceptance criteria:** 4.5–7.0**ADDITIONAL REQUIREMENTS**

- **PACKAGING AND STORAGE:** Preserve in tight containers.

- **LABELING:** Where Magnesium Chloride is intended for use in hemodialysis, it is so labeled.

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
MAGNESIUM CHLORIDE	Documentary Standards Support	SM32020 Small Molecules 3
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM32020 Small Molecules 3

Chromatographic Database Information: [Chromatographic Database](#)**Most Recently Appeared In:**

Pharmacopeial Forum: Volume No. PF 32(6)

Current DocID: [GUID-6CDF7132-D059-43B2-8E31-70CBB21A961B_4_en-US](#)**DOI:** https://doi.org/10.31003/USPNF_M46710_04_01**DOI ref:** [9x9sx](#)