

Status: Currently Official on 18-Feb-2025  
Official Date: Official as of 01-Jun-2023  
Document Type: USP Monographs  
DocId: GUID-DDACA658-DDE0-42A4-8BEF-DED473D77333\_6\_en-US  
DOI: [https://doi.org/10.31003/USPNF\\_M46680\\_06\\_01](https://doi.org/10.31003/USPNF_M46680_06_01)  
DOI Ref: 22f4i

© 2025 USPC  
Do not distribute

## Magnesium Carbonate

Carbonic acid, magnesium salt, basic; or, Carbonic acid, magnesium salt (1:1), hydrate;  
Magnesium carbonate, basic; or, Magnesium carbonate (1:1) hydrate CAS RN®: 23389-33-5.  
Anhydrous

84.31 CAS RN®: 546-93-0; UNII: 0IHC698356.

### DEFINITION

Magnesium Carbonate is a basic hydrated magnesium carbonate or a normal hydrated magnesium carbonate. It contains the equivalent of NLT 40.0% and NMT 43.5% of magnesium oxide (MgO).

### IDENTIFICATION

• A. [IDENTIFICATION TESTS—GENERAL \(191\), Chemical Identification Tests, Magnesium](#)

**Sample solution:** When treated with 3 N [hydrochloric acid](#), it dissolves with effervescence.

**Acceptance criteria:** Meets the requirements

• B. [IDENTIFICATION TESTS—GENERAL \(191\), Chemical Identification Tests, Carbonate](#)

**Analysis:** Proceed as directed in test A.

**Acceptance criteria:** Meets the requirements

### ASSAY

• PROCEDURE

**Sample:** 1 g of Magnesium Carbonate

**Titrimetric system**

**Mode:** Residual titration

**Titrant:** [1 N sodium hydroxide VS](#)

**Endpoint detection:** Visual

**Analysis:** Dissolve the **Sample** in 30.0 mL of [1 N sulfuric acid VS](#), add [methyl orange TS](#), and titrate the excess acid with **Titrant**. Perform the blank determination. Calculate the volume,  $V_s$ , of [1 N sulfuric acid VS](#), in mL, consumed by the **Sample**:

$$\text{Result} = (V_B - V_A) \times N_{\text{NaOH}}$$

$V_B$  = volume of **Titrant** consumed by the blank determination (mL)

$V_A$  = volume of **Titrant** consumed by the **Sample** (mL)

$N_{\text{NaOH}}$  = actual normality of the sodium hydroxide solution

Calculate the volume of [1 N sulfuric acid VS](#),  $V_{Ca}$ , in mL, consumed by calcium, which is present in the portion of Magnesium Carbonate taken for the Assay:

$$\text{Result} = (W \times L_{Ca}) / (F_{Ca} \times 100)$$

$W$  = weight of Magnesium Carbonate taken (mg)

$L_{Ca}$  = content of calcium as determined in the test for *Limit of Calcium* (%)

$F_{Ca}$  = weight of Ca that is equivalent to each mL of [1 N sulfuric acid VS](#), 20.04 mg

Calculate the percentage of magnesium oxide (MgO) in the portion of Magnesium Carbonate taken:

$$\text{Result} = (V_s - V_{Ca}) \times F_{MgO} / W \times 100$$

$V_s$  = volume of [1 N sulfuric acid VS](#) consumed by the **Sample**, as calculated above (mL)

$V_{Ca}$  = volume of [1 N sulfuric acid VS](#) consumed by calcium, as calculated above (mL)

$F_{MgO}$  = weight of MgO that is equivalent to each mL of [1 N sulfuric acid VS](#), 20.15 mg

W = weight of Magnesium Carbonate taken (mg)

**Acceptance criteria:** 40.0%–43.5% of magnesium oxide (MgO)**IMPURITIES****• SOLUBLE SALTS****Sample:** 2.0 g of Magnesium Carbonate**Analysis:** Mix the *Sample* with 100 mL of a mixture of equal volumes of [n-propyl alcohol](#) and [water](#). Heat the mixture to the boiling point with constant stirring, cool to room temperature, dilute with [water](#) to 100 mL, and filter. Evaporate 50 mL of the filtrate on a steam bath to dryness, and dry at 105° for 1 h.**Acceptance criteria:** The weight of the residue does not exceed 10 mg (NMT 1.0%).**• ACID-INSOLUBLE SUBSTANCES****Sample:** 5.0 g of Magnesium Carbonate**Analysis:** Mix the *Sample* with 75 mL of [water](#), add [hydrochloric acid](#) in small portions, with agitation, until no more of the magnesium carbonate dissolves, and boil for 5 min. If an insoluble residue remains, filter, wash well with [water](#) until the last washing is free from chloride, and ignite.**Acceptance criteria:** The weight of the ignited residue does not exceed 2.5 mg (NMT 0.05%).**Change to read:****• ▲ [ARSENIC \(211\), Procedures, Procedure 1](#) ▲ (CN 1-Jun-2023)****Test preparation:** 750 mg of Magnesium Carbonate in 25 mL of 3 N [hydrochloric acid](#)**Acceptance criteria:** NMT 4 ppm**• LIMIT OF CALCIUM**

[**NOTE**—A commercially available atomic absorption standard solution for calcium may be used where preparation of a calcium standard stock solution is described below. Concentrations of the *Standard solutions* and the *Sample solution* may be modified to fit the linear or working range of the instrument.]

**Dilute hydrochloric acid:** Dilute 100 mL of [hydrochloric acid](#) with [water](#) to 1000 mL.**Lanthanum solution:** 50 mg/mL of lanthanum prepared as follows. To 58.65 g of [lanthanum oxide](#) add 400 mL of [water](#), and add, gradually with stirring, 250 mL of [hydrochloric acid](#). Stir until dissolved, and dilute with [water](#) to 1000 mL.**Blank solution:** Transfer 4 mL of the *Lanthanum solution* and 10 mL of *Dilute hydrochloric acid* to a 200-mL volumetric flask, and dilute with [water](#) to volume.**Standard stock solution:** 1.0 mg/mL of calcium prepared as follows. Transfer 249.7 mg of calcium carbonate, previously dried at 300° for 3 h and cooled in a desiccator for 2 h, to a 100-mL volumetric flask. Dissolve in a minimum amount of [hydrochloric acid](#), and dilute with [water](#) to volume.**Standard solution 1:** 1.0 µg/mL of calcium prepared as follows. Transfer 1.0 mL of *Standard stock solution* to a 1000-mL volumetric flask containing 20 mL of the *Lanthanum solution* and 40 mL of *Dilute hydrochloric acid*, and dilute with [water](#) to volume.**Standard solution 2:** 5.0 µg/mL of calcium prepared as follows. Transfer 5.0 mL of *Standard stock solution* to a 1000-mL volumetric flask containing 20 mL of the *Lanthanum solution* and 40 mL of *Dilute hydrochloric acid*, and dilute with [water](#) to volume.**Standard solution 3:** 10.0 µg/mL of calcium prepared as follows. Transfer 10.0 mL of *Standard stock solution* to a 1000-mL volumetric flask containing 20 mL of the *Lanthanum solution* and 40 mL of *Dilute hydrochloric acid*, and dilute with [water](#) to volume.**Standard solution 4:** 15.0 µg/mL of calcium prepared as follows. Transfer 15.0 mL of *Standard stock solution* to a 1000-mL volumetric flask containing 20 mL of the *Lanthanum solution* and 40 mL of *Dilute hydrochloric acid*, and dilute with [water](#) to volume.**Sample solution:** 1.25 mg/mL of Magnesium Carbonate prepared as follows. Transfer 250 mg of Magnesium Carbonate to a beaker, add 30 mL of *Dilute hydrochloric acid*, and stir until dissolved, heating if necessary. Transfer the solution so obtained to a 200-mL volumetric flask containing 4 mL of *Lanthanum solution*, and dilute with [water](#) to volume.**Instrumental conditions**(See [Atomic Absorption Spectroscopy \(852\)](#).)**Mode:** Atomic absorption spectrophotometry**Analytical wavelength:** 422.7 nm**Lamp:** Calcium hollow-cathode**Flame:** Nitrous oxide–acetylene**Analysis****Samples:** *Blank solution*, *Standard solutions*, and *Sample solution*Using the *Blank solution* as blank, determine the concentration,  $C_s$ , in µg/mL, of calcium in the *Sample solution* using the calibration graph.

Calculate the percentage of calcium in the portion of Magnesium Carbonate taken:

$$\text{Result} = (C_s \times F/C_u) \times 100$$

 $C_s$  = concentration of calcium in the *Sample solution* determined (µg/mL) $F$  = unit conversion factor, 0.001 mg/µg

$C_u$  = concentration of Magnesium Carbonate in the *Sample solution* (mg/mL)**Acceptance criteria:** NMT 0.45%**Change to read:**

- ▲ [IRON \(241\), Procedures, Procedure 1](#) ▲ (CN 1-JUN-2023)

**Test preparation:** Boil 50 mg of Magnesium Carbonate with 5 mL of 2 N [nitric acid](#) for 1 min. Cool, dilute with [water](#) to 45 mL, add 2 mL of [hydrochloric acid](#), and mix.**Acceptance criteria:** NMT 200 ppm**SPECIFIC TESTS**

- [MICROBIAL ENUMERATION TESTS \(61\)](#) and [TESTS FOR SPECIFIED MICROORGANISMS \(62\)](#): It meets the requirements of the test for absence of *Escherichia coli*.

**ADDITIONAL REQUIREMENTS**

- **PACKAGING AND STORAGE:** Preserve in tight containers.

**Auxiliary Information** - Please [check for your question in the FAQs](#) before contacting USP.

| Topic/Question             | Contact                                                                     | Expert Committee          |
|----------------------------|-----------------------------------------------------------------------------|---------------------------|
| MAGNESIUM CARBONATE        | <a href="#">Documentary Standards Support</a>                               | SM32020 Small Molecules 3 |
| REFERENCE STANDARD SUPPORT | RS Technical Services<br><a href="mailto:RSTECH@usp.org">RSTECH@usp.org</a> | SM32020 Small Molecules 3 |

**Chromatographic Database Information:** [Chromatographic Database](#)**Most Recently Appeared In:**

Pharmacopeial Forum: Volume No. PF 44(2)

**Current DocID: GUID-DDACA658-DDE0-42A4-8BEF-DED473D77333\_6\_en-US****DOI:** [https://doi.org/10.31003/USPNF\\_M46680\\_06\\_01](https://doi.org/10.31003/USPNF_M46680_06_01)**DOI ref:** [22f4i](#)