

Status: Currently Official on 15-Feb-2025
Official Date: Official as of 01-Nov-2020
Document Type: USP Monographs
DocId: GUID-D97F8E4C-A80D-4A63-B18D-BEC6EB202AA3_3_en-US
DOI: https://doi.org/10.31003/USPNF_M45938_03_01
DOI Ref: 8es4h

© 2025 USPC
Do not distribute

Losartan Potassium and Hydrochlorothiazide Tablets

DEFINITION

Losartan Potassium and Hydrochlorothiazide Tablets contain NLT 95.0% and NMT 105.0% of the labeled amount of losartan potassium ($C_{22}H_{22}ClKN_6O$) and hydrochlorothiazide ($C_7H_8ClN_3O_4S_2$).

IDENTIFICATION

- A. The retention times of the major peaks of the *Sample solution* correspond to those of the *Standard solution*, as obtained in the Assay.
- B. The UV spectra of the major peaks of the *Sample solution* correspond to those of the *Standard solution*, as obtained in the Assay.

ASSAY

Change to read:

• **PROCEDURE**

Buffer A: 2.76 g/L of [▲ monobasic sodium phosphate](#) (ERR 1-Nov-2020) in [water](#). Adjust with [phosphoric acid](#) to a pH of 2.5.

Buffer B: 1.25 g/L of [monobasic potassium phosphate](#) and 1.5 g/L of [dibasic sodium phosphate](#) in [water](#). The pH of the resulting solution is about 7.0–7.5.

Solution A: [Acetonitrile](#) and **Buffer B** (7:93)

Solution B: [Acetonitrile](#)

Mobile phase: See [Table 1](#).

Table 1

Time (min)	Solution A (%)	Solution B (%)
0	100	0
12	92	8
28	38	62
30	100	0
35	100	0

Diluent: [Acetonitrile](#) and **Buffer A** (60:40)

Standard solution: Transfer appropriate amounts of [USP Losartan Potassium RS](#) and [USP Hydrochlorothiazide RS](#) into a suitable volumetric flask, and dissolve in **Diluent** (50% of the volume of the flask). Dilute with **Buffer A** to volume to obtain a solution having concentrations as directed in [Table 2](#). Pass a portion of the solution through a PTFE or equivalent filter of 0.45- μ m pore size.

Table 2

Tablet Strength Losartan Potassium/Hydrochlorothiazide (mg)	Concentration of USP Losartan Potassium RS (mg/mL)	Concentration of USP Hydrochlorothiazide RS (mg/mL)
50/12.5	0.4	0.1
100/12.5	0.4	0.05
100/25	0.4	0.1

Sample stock solution: Transfer 10 Tablets into a suitable volumetric flask and add **Diluent** as directed in [Table 3](#). Mix well and mechanically shake or stir until the solid is dispersed. Dilute with **Buffer A** to volume, and sonicate.

Table 3

Tablet Strength Losartan Potassium/ Hydrochlorothiazide (mg)	Flask Size (mL)	Volume of Diluent (mL)
50/12.5	250	210
100/12.5	500	420
100/25	500	420

Sample solution: Dilute a portion of the *Sample stock solution* first with [acetonitrile](#) (20% of the volume of the flask) and then with *Buffer A* to obtain a solution having nominal concentrations of losartan potassium and hydrochlorothiazide similar to those of the *Standard solution*. Pass a portion of this solution through a PTFE or equivalent filter of 0.45- μ m pore size, and use the filtrate.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 280 nm. For *Identification B*, use a diode array detector in the range of 190–400 nm.

Column: 3.9-mm \times 15-cm; 5- μ m packing [L7](#)

Column temperature: 35°

Flow rate: 1 mL/min

Injection volume: 20 μ L

System suitability

Sample: *Standard solution*

[**NOTE**—The relative retention times for hydrochlorothiazide and losartan are 1.0 and 3.0, respectively.]

Suitability requirements

Tailing factor: NMT 2.5 for the losartan peak

Relative standard deviation: NMT 2.0% for both hydrochlorothiazide and losartan peaks

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of the labeled amount of losartan potassium ($C_{22}H_{22}ClKN_6O$) or hydrochlorothiazide ($C_7H_8ClN_3O_4S_2$) in the portion of Tablets taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_u = peak response of losartan or hydrochlorothiazide from the *Sample solution*

r_s = peak response of losartan or hydrochlorothiazide from the *Standard solution*

C_s = concentration of [USP Losartan Potassium RS](#) or [USP Hydrochlorothiazide RS](#) in the *Standard solution* (mg/mL)

C_u = nominal concentration of losartan potassium or hydrochlorothiazide in the *Sample solution* (mg/mL)

Acceptance criteria: 95.0%–105.0%

PERFORMANCE TESTS

- [Dissolution \(711\)](#)

Test 1

Medium: [Water](#); 900 mL, deaerated

Apparatus 1: 100 rpm

Time: 30 min for both losartan and hydrochlorothiazide

Buffer: 1.36 g/L of [monobasic potassium phosphate](#) in [water](#). Adjust with [phosphoric acid](#) to a pH of 2.5.

Mobile phase: [Acetonitrile](#) and *Buffer* (40:60)

Losartan potassium stock solution: 0.44 mg/mL of [USP Losartan Potassium RS](#) in *Medium*

Hydrochlorothiazide stock solution: 0.14 mg/mL of [USP Hydrochlorothiazide RS](#) prepared by dissolving in [methanol](#) (10% of the volume of the flask). Dilute with *Medium* to volume.

Standard solution: Transfer the appropriate volumes of *Losartan potassium stock solution* and *Hydrochlorothiazide stock solution* to a 100-mL volumetric flask according to the dilution schemes in [Table 4](#). Dilute with *Medium* to volume.

Table 4

Tablet Strength Losartan Potassium/Hydrochlorothiazide (mg)	Aliquot of Losartan Potassium Stock Solution (mL)	Aliquot of Hydrochlorothiazide Stock Solution (mL)
50/12.5	12.5	10.0
100/12.5	25.0	10.0
100/25	25.0	20.0

Sample solution: Pass a portion of the solution under test through a suitable filter of 0.45- μ m pore size.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 230 nm

Column: 4.6-mm \times 25-cm; 10- μ m packing [L7](#)

Column temperature: 35°

Flow rate: 2.3 mL/min

Injection volume: 20 μ L

Run time: NLT 2 times the retention time of the losartan peak

System suitability

Sample: Standard solution

[**NOTE**—The relative retention times for hydrochlorothiazide and losartan are 1.0 and 2.7, respectively.]

Suitability requirements

Resolution: NLT 2 between the hydrochlorothiazide and losartan peaks

Relative standard deviation: NMT 2.0% for both the hydrochlorothiazide and losartan peaks

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of the labeled amount of losartan potassium ($C_{22}H_{22}ClKN_6O$) or hydrochlorothiazide ($C_7H_8ClN_3O_4S_2$) dissolved:

$$\text{Result} = (r_u/r_s) \times C_s \times V \times (1/L) \times 100$$

r_u = peak response of losartan or hydrochlorothiazide from the Sample solution

r_s = peak response of losartan or hydrochlorothiazide from the Standard solution

C_s = concentration of [USP Losartan Potassium RS](#) or [USP Hydrochlorothiazide RS](#) in the Standard solution (mg/mL)

V = volume of Medium, 900 mL

L = label claim (mg/Tablet)

Tolerances: NLT 85% (Q) of the labeled amount of losartan potassium ($C_{22}H_{22}ClKN_6O$) and NLT 75% (Q) of the labeled amount of hydrochlorothiazide ($C_7H_8ClN_3O_4S_2$) is dissolved.

Test 2: If the product complies with this test, the labeling indicates that the product meets USP Dissolution Test 2.

Medium, Apparatus 1, and Time: Proceed as directed in Test 1.

Buffer: 1.78 g/L of [dibasic sodium phosphate dihydrate](#) in [water](#). Adjust with [phosphoric acid](#) to a pH of 6.5.

Mobile phase: [Acetonitrile](#) and Buffer (32:68)

Diluent: [Acetonitrile](#) and [water](#) (40:60)

Standard stock solution 1: 1.1 mg/mL of [USP Losartan Potassium RS](#) in [Diluent](#). Sonication may be necessary for complete dissolution.

Standard stock solution 2: 0.28 mg/mL of [USP Hydrochlorothiazide RS](#) in [Diluent](#). Sonication may be necessary for complete dissolution.

Standard solution: Transfer appropriate volumes of Standard stock solution 1 and Standard stock solution 2 to a 100-mL volumetric flask according to the dilution schemes in [Table 5](#). Dilute with [Medium](#) to volume.

Table 5

Tablet Strength Losartan Potassium/Hydrochlorothiazide (mg)	Aliquot of Standard Stock Solution 1 (mL)	Aliquot of Standard Stock Solution 2 (mL)
50/12.5	5	5
100/12.5	10	5
100/25	10	10

Sample solution: Pass a portion of the solution under test through a suitable filter of 0.45-µm pore size.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 225 nm

Column: 4.6-mm × 25-cm; 5-µm packing [L1](#)

Autosampler temperature: 8°

Flow rate: 1.2 mL/min

Injection volume: 10 µL

Run time: NLT 2 times the retention time of the losartan peak

System suitability

Sample: Standard solution

[NOTE—The relative retention times for hydrochlorothiazide and losartan are 1.0 and 1.4, respectively.]

Suitability requirements

Relative standard deviation: NMT 2.0% for both the hydrochlorothiazide and losartan peaks

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of the labeled amount of losartan potassium ($C_{22}H_{22}ClKN_6O$) and hydrochlorothiazide ($C_7H_8ClN_3O_4S_2$) dissolved:

$$\text{Result} = (r_U/r_S) \times C_S \times (1/L) \times V \times 100$$

r_U = peak response of losartan or hydrochlorothiazide from the *Sample solution*

r_S = peak response of losartan or hydrochlorothiazide from the *Standard solution*

C_S = concentration of [USP Losartan Potassium RS](#) or [USP Hydrochlorothiazide RS](#) in the *Standard solution* (mg/mL)

L = label claim (mg/Tablet)

V = volume of *Medium*, 900 mL

Tolerances: NLT 85% (Q) of the labeled amount of losartan potassium ($C_{22}H_{22}ClKN_6O$) and NLT 80% (Q) of the labeled amount of hydrochlorothiazide ($C_7H_8ClN_3O_4S_2$) is dissolved.

- [Uniformity of Dosage Units \(905\)](#): Meet the requirements

IMPURITIES

• **ORGANIC IMPURITIES**

Buffer A, Buffer B, Solution A, Solution B, Mobile phase, Diluent, Standard solution, Sample solution, and Chromatographic system: Proceed as directed in the Assay.

Chlorothiazide standard solution: 0.1 mg/mL of [USP Chlorothiazide RS](#) prepared by dissolving in *Diluent* (50% of the volume of the flask). Dilute with *Buffer A* to volume, and sonicate.

Benzothiadiazine related compound A standard solution: 0.1 mg/mL of [USP Benzothiadiazine Related Compound A RS](#) prepared by dissolving in *Diluent* (50% of the volume of the flask). Dilute with *Buffer A* to volume, and sonicate.

Stressed losartan solution: [NOTE—This solution contains the degradates 1-*H*-dimer and 2-*H*-dimer and losartan potassium.] Weigh 12 mg of the [USP Losartan Potassium RS](#) in a 50-mL flask. Dissolve in 5 mL of [water](#). Pipet 5.0 mL of 0.1 N [hydrochloric acid](#) into this solution, and place it in an oven at 105° for 1–2 h. Remove from the oven and allow to cool to room temperature. Pipet 5.0 mL of 0.1 N [sodium hydroxide](#) into the flask, and dilute with [water](#) to volume.

Diluted standard solution: Dilute portions of the *Standard solution* and *Benzothiadiazine related compound A standard solution* first with [acetonitrile](#) (30% of the volume of the flask), then with *Buffer A* to obtain a solution having nominal concentrations based on Tablet strength as listed in [Table 6](#).

Table 6

Tablet Strength Losartan Potassium/ Hydrochlorothiazide (mg)	Concentration of USP Losartan Potassium RS (μg/mL)	Concentration of USP Hydrochlorothiazide RS (μg/mL)	Concentration of USP Benzothiadiazine Related Compound A RS (μg/mL)
50/12.5	4	1	1
100/12.5	4	0.5	1
100/25	4	1	1

System suitability solution: Dissolve weighed quantities of [USP Losartan Potassium RS](#) and [USP Hydrochlorothiazide RS](#) in a suitable volumetric flask in *Diluent* (50% of the volume of the flask). Add the *Stressed losartan solution*, about 25% of the volume of the flask, into the same flask. Transfer appropriate amounts of *Chlorothiazide standard solution* and *Benzothiadiazine related compound A standard solution* into the same flask, and dilute with *Buffer A* to volume to obtain a solution having a known concentration of about 0.4 mg/mL of losartan, 0.1 mg/mL of hydrochlorothiazide, and 0.001 mg/mL each of benzothiadiazine related compound A and chlorothiazide. Adjust with [phosphoric acid](#) to a pH of 2.5, and mix well. Pass an aliquot of the solution through a PTFE or equivalent filter of 0.45- μ m pore size, and use the filtrate.

Sensitivity solution: Pipet 5.0 mL of the *Diluted standard solution* into a 50-mL volumetric flask. Add 15 mL of [acetonitrile](#), dilute with *Buffer A* to volume, and mix well.

System suitability

Samples: *Standard solution*, *Diluted standard solution*, *System suitability solution*, and *Sensitivity solution*

[**NOTE**—The run time is about 1.6 times the retention time of the losartan peak. See [Table 7](#) for the relative retention times.]

Suitability requirements

Resolution: NLT 1.5 between chlorothiazide and benzothiadiazine related compound A; NLT 1.5 between benzothiadiazine related compound A and hydrochlorothiazide, *System suitability solution*

Tailing factor: NMT 2.5 for the losartan peak, *Standard solution*

Relative standard deviation: NMT 2.0% for both the hydrochlorothiazide and losartan peaks, *Standard solution*; NMT 10.0% for both the hydrochlorothiazide and losartan peaks, *Diluted standard solution*

Signal-to-noise ratio: NLT 10 for each component from the first injection. If this is not met, then the signal-to-noise ratio must be greater than 3 with a relative standard deviation of area counts less than 25% for 3 replicate injections, *Sensitivity solution*

Analysis

Samples: *Sample solution* and *Diluted standard solution*

Calculate the percentage of benzothiadiazine related compound A (expressed as hydrochlorothiazide equivalent) in the portion of Tablets taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times (M_{r1}/M_{r2}) \times 100$$

r_u = peak response of benzothiadiazine related compound A from the *Sample solution*

r_s = peak response of benzothiadiazine related compound A from the *Diluted standard solution*

C_s = concentration of [USP Benzothiadiazine Related Compound A RS](#) in the *Diluted standard solution* (mg/mL)

C_u = nominal concentration of hydrochlorothiazide in the *Sample solution* (mg/mL)

M_{r1} = molecular weight of hydrochlorothiazide, 298

M_{r2} = molecular weight of benzothiadiazine related compound A, 286

Calculate the percentage of each specified impurity in the portion of Tablets taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_u = peak response of each individual impurity from the *Sample solution*

r_s = peak response of losartan from the *Diluted standard solution*

C_s = concentration of [USP Losartan Potassium RS](#) in the *Diluted standard solution* (mg/mL)

C_u = nominal concentration of losartan potassium in the *Sample solution* (mg/mL)

For Tablet strengths of 50/12.5 and 100/25 mg for losartan potassium/hydrochlorothiazide, respectively, calculate the percentage of any other impurity in the portion of Tablets taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_u = peak response of each individual impurity from the *Sample solution*

r_s = peak response of losartan from the *Diluted standard solution*

C_s = concentration of [USP Losartan Potassium RS](#) in the *Diluted standard solution* (mg/mL)

C_u = nominal concentration of losartan potassium in the *Sample solution* (mg/mL)

For a Tablet strength of 100/12.5 mg for losartan potassium/hydrochlorothiazide, calculate the percentage of any other impurity in the portion of Tablets taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_u = peak response of each individual impurity from the *Sample solution*

r_s = peak response of hydrochlorothiazide from the *Diluted standard solution*

C_s = concentration of [USP Hydrochlorothiazide RS](#) in the *Diluted standard solution* (mg/mL)

C_u = nominal concentration of hydrochlorothiazide in the *Sample solution* (mg/mL)

Acceptance criteria See [Table 7](#).

Table 7

Name	Relative Retention Time	Acceptance Criteria, NMT (%)
Chlorothiazide ^a	0.57	—
Benzothiadiazine related compound A	0.69	1.0
Hydrochlorothiazide	1.0	—
Losartan	2.7	—
1-H-Dimer ^b	3.3	0.5
2-H-Dimer ^c	3.5	0.5
Any unspecified degradation product	—	0.2
Total impurities ^d	—	2.0

^a This process impurity (not a degradation product) is related to hydrochlorothiazide and is controlled in the drug substance.

^b Related to losartan potassium: 5-[4'-(2-Butyl-5-[(5-{4'-(2-butyl-4-chloro-5-hydroxymethyl-1*H*-imidazol-1-yl)methyl]biphenyl-2-yl}-1*H*-tetrazol-1-yl)methyl]-4-chloro-1*H*-imidazol-1-yl)methyl]biphenyl-2-yl]tetrazol, potassium salt.

^c Related to losartan potassium: 5-[4'-(2-Butyl-5-[(5-{4'-(2-butyl-4-chloro-5-hydroxymethyl-1*H*-imidazol-1-yl)methyl]biphenyl-2-yl}-2*H*-tetrazol-2-yl)methyl]-4-chloro-1*H*-imidazol-1-yl)methyl]biphenyl-2-yl]tetrazol, potassium salt.

^d Total impurities include the sum of all the specified impurities and the unspecified impurities that are equal to or greater than 0.1%.

ADDITIONAL REQUIREMENTS

• **PACKAGING AND STORAGE:** Preserve in tightly closed containers protected from light, and store at controlled room temperature.

• **LABELING:** When more than one *Dissolution* test is given, the labeling states the *Dissolution* test used only if *Test 1* is not used.

• [USP Reference Standards \(11\)](#)

[USP Benzothiadiazine Related Compound A RS](#)

4-Amino-6-chloro-1,3-benzenedisulfonamide.

$C_6H_8ClN_3O_4S_2$ 285.73

[USP Chlorothiazide RS](#)

[USP Hydrochlorothiazide RS](#)

[USP Losartan Potassium RS](#)

Topic/Question	Contact	Expert Committee
LOSARTAN POTASSIUM AND HYDROCHLOROTHIAZIDE TABLETS	Documentary Standards Support	SM22020 Small Molecules 2

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. 45(3)

Current DocID: [GUID-D97F8E4C-A80D-4A63-B18D-BEC6EB202AA3_3_en-US](#)

DOI: https://doi.org/10.31003/USPNF_M45938_03_01

DOI ref: [8es4h](#)

OFFICIAL