

Status: Currently Official on 15-Feb-2025
Official Date: Official as of 01-May-2020
Document Type: USP Monographs
DocId: GUID-D0D2BB6E-7D09-4246-A466-C267AFABE90D_4_en-US
DOI: https://doi.org/10.31003/USPNF_M45894_04_01
DOI Ref: n1wen

© 2025 USPC
Do not distribute

Loratadine

$C_{22}H_{23}ClN_2O_2$ 382.88

1-Piperidinecarboxylic acid, 4-(8-chloro-5,6-dihydro-11H-benzo[5,6]cyclohepta[1,2-b]pyridin-11-ylidene)-, ethyl ester;

Ethyl 4-(8-chloro-5,6-dihydro-11H-benzo[5,6]cyclohepta[1,2-b]pyridin-11-ylidene)-1-piperidinecarboxylate CAS RN®: 79794-75-5; UNII: 7AJ03B07QN.

DEFINITION

Loratadine contains NLT 98.5% and NMT 101.0% of loratadine ($C_{22}H_{23}ClN_2O_2$), calculated on the dried basis.

IDENTIFICATION

Change to read:

- A. ▲[SPECTROSCOPIC IDENTIFICATION TESTS \(197\), Infrared Spectroscopy: 197M](#) ▲ (CN 1-MAY-2020)
- B. The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.

ASSAY

• PROCEDURE

Buffer A (0.01 M dibasic potassium phosphate): 1.74 g/L of anhydrous dibasic potassium phosphate in water

Buffer B (0.6 M dibasic potassium phosphate): 105 g/L of anhydrous dibasic potassium phosphate in water

0.05 N hydrochloric acid: Transfer 500 mL of water to a 1000-mL volumetric flask, add 83 mL of hydrochloric acid, and dilute with water to volume. Transfer 50 mL of this solution into a 1000-mL volumetric flask, and dilute with water to volume.

Mobile phase: Acetonitrile, methanol, and *Buffer A* (60:60:70). Adjust with 10% phosphoric acid to an apparent pH of 7.2.

Diluent: Transfer 400 mL of 0.05 N hydrochloric acid and 80 mL of *Buffer B* to a 1-L volumetric flask. Dilute with a mixture of acetonitrile and methanol (1:1) to volume.

Standard solution: 0.4 mg/mL of [USP Loratadine RS](#) in *Diluent*

Sample solution: 0.4 mg/mL of Loratadine in *Diluent*

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 254 nm

Column: 4.6-mm × 15-cm; 5-μm packing L7

Column temperature: 25°–35°

Flow rate: 1 mL/min

Injection volume: 15 μL

System suitability

Sample: *Standard solution*

Suitability requirements

Relative standard deviation: NMT 2.0%

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of loratadine ($C_{22}H_{23}ClN_2O_2$) in the portion of Loratadine taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

r_U = peak response from the *Sample solution*

r_s = peak response from the *Standard solution* C_s = concentration of [USP Loratadine RS](#) in the *Standard solution* (mg/mL) C_u = concentration of the *Sample solution* (mg/mL)**Acceptance criteria:** 98.5%–101.0% on the dried basis**IMPURITIES****• [RESIDUE ON IGNITION \(281\)](#):** NMT 0.1%**• [ORGANIC IMPURITIES, PROCEDURE 1](#)**

[NOTE—On the basis of the synthetic route, perform either *Procedure 1* or *Procedure 2*. *Procedure 2* is recommended if 4,8-dichloro-5,6-dihydro-11*H*-benzo[5,6]cyclohepta[1,2-*b*]pyridin-11-one is a potential related compound.]

Mobile phase and Diluent: Proceed as directed in the Assay.**Standard solution:** 0.8 µg/mL of [USP Loratadine RS](#) in *Diluent***Sample solution:** 0.4 mg/mL of Loratadine in *Diluent***Chromatographic system**(See [Chromatography \(621\), System Suitability](#).)**Mode:** LC**Detector:** UV 254 nm**Column:** 4.6-mm × 15-cm; 5-µm packing L7**Column temperature:** 25°–35°**Flow rate:** 1 mL/min**Injection volume:** 50 µL**System suitability****Sample:** *Standard solution***Suitability requirements****Relative standard deviation:** NMT 4.0%**Analysis****Samples:** *Standard solution* and *Sample solution*

Calculate the percentage of each impurity in the portion of Loratadine taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times (1/F) \times 100$$

 r_u = peak area of each impurity from the *Sample solution* r_s = peak area of loratadine from the *Standard solution* C_s = concentration of [USP Loratadine RS](#) in the *Standard solution* (mg/mL) C_u = concentration of Loratadine in the *Sample solution* (mg/mL) F = relative response factor as listed in [Table 1](#)**Acceptance criteria:** See [Table 1](#).**Table 1**

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Fluoroloratadine ^a	0.79	0.25	0.2
Loratadine	1.0	—	—
Any other individual impurity	—	1.0	0.1
Total impurities	—	—	0.3

^a Ethyl 4-(8-chloro-11-fluoro-5,6-dihydro-11*H*-benzo[5,6]cyclohepta[1,2-*b*]pyridin-11-yl) piperidin-1-carboxylate.**• [ORGANIC IMPURITIES, PROCEDURE 2](#)****Solution A:** Dissolve 0.96 g of 1-pentanesulfonic acid sodium salt in 900 mL of water. Adjust with phosphoric acid solution (1 in 10) to a pH of 3.00 ± 0.05, and dilute with water to 1 L.**Solution B:** Acetonitrile

Mobile phase: See [Table 2](#).**Table 2**

Time (min)	Solution A (%)	Solution B (%)
0	75	25
20	50	50
30	40	60
35	30	70
45	30	70
50	75	25

Standard stock solution: 0.1 mg/mL each of [USP Loratadine RS](#), [USP Loratadine Related Compound A RS](#), and [USP Loratadine Related Compound B RS](#) in methanol

Standard solution: 0.01 mg/mL each of [USP Loratadine RS](#), [USP Loratadine Related Compound A RS](#), and [USP Loratadine Related Compound B RS](#) prepared as follows. Transfer 1.0 mL of the *Standard stock solution* to a 10-mL volumetric flask, add 2 mL of *Solution A*, and dilute with methanol to volume.

Sample solution: 10 mg/mL of Loratadine prepared as follows. Transfer 100 mg of Loratadine to a 10-mL volumetric flask, and dissolve in 2 mL of methanol. Add 2 mL of *Solution A*, and then dilute with methanol to volume.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 254 nm

Column: 4.6-mm × 25-cm; 5-μm packing L1

Flow rate: 1.2 mL/min

Injection volume: 20 μL

System suitability

Sample: *Standard solution*

Suitability requirements

Resolution: NLT 1.5 between loratadine related compound A and loratadine related compound B

Relative standard deviation: NMT 10% for the loratadine peak

Analysis

Sample: *Sample solution*

Calculate the percentage of each impurity in the portion of Loratadine taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times (1/F) \times 100$$

r_u = peak area of each individual impurity from the *Sample solution*

r_s = peak area of loratadine from the *Standard solution*

C_s = concentration of [USP Loratadine RS](#) in the *Standard solution* (mg/mL)

C_u = concentration of Loratadine in the *Sample solution* (mg/mL)

F = relative response factor as listed in [Table 3](#)

Acceptance criteria: See [Table 3](#).

Table 3

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Loratadine related compound A	0.50	1.00	0.1
Loratadine related compound B	0.53	0.89	0.1

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Loratadine related compound C ^a	0.70	0.60	0.1
Hydroxy deacyl analog ^b	0.75	0.46	0.1
Loratadine	1.00	—	—
Dichlorobenzocycloheptapyridine none ^c	1.23	0.92	0.1
Hydroxyloratadine ^d	1.60	0.42	0.1
4-Chloroloratadine ^e	1.83	1.08	0.1
Any individual unknown impurity	—	1.0	0.10
Total impurities	—	—	0.3

^a 8-Chloro-5,6-dihydro-11*H*-benzo[5,6]cyclohepta[1,2-*b*]pyridin-11-one.

^b 8-Chloro-5,6-dihydro-11-hydroxy-11-(1-methylpiperidin-4-yl)-11*H*-benzo[5,6]cyclohepta[1,2-*b*]pyridine.

^c 4,8-Dichloro-5,6-dihydro-11*H*-benzo[5,6]cyclohepta[1,2-*b*]pyridin-11-one.

^d Ethyl 4-(8-chloro-11-hydroxy-5,6-dihydro-11*H*-benzo[5,6]cyclohepta[1,2-*b*]pyridin-11-yl) piperidin-1-carboxylate.

^e Ethyl 4-(4,8-dichloro-5,6-dihydro-11*H*-benzo[5,6]cyclohepta[1,2-*b*]pyridin-11-ylidene)piperidin-1-carboxylate.

SPECIFIC TESTS

- [Loss on Drying \(731\)](#).

Analysis: Dry a sample at 100° to constant weight.

Acceptance criteria: NMT 0.5%

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in well-closed containers, and store between 2° and 30°.
- **LABELING:** If a test for *Organic Impurities* other than *Procedure 1* is used, then the labeling states with which *Organic Impurities* test the article complies.

- [USP Reference Standards \(11\)](#).

[USP Loratadine RS](#)

[USP Loratadine Related Compound A RS](#)

8-Chloro-5,6-dihydro-11-(piperidin-4-ylidene)-11*H*-benzo[5,6]cyclohepta[1,2-*b*]pyridine.

$C_{19}H_{19}ClN_2$ 310.82

[USP Loratadine Related Compound B RS](#)

8-Chloro-5,6-dihydro-11-(N-methylpiperidin-4-ylidene)-11*H*-benzo[5,6]cyclohepta[1,2-*b*]pyridine.

$C_{20}H_{21}ClN_2$ 324.85

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
LORATADINE	Documentary Standards Support	SM52020 Small Molecules 5

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 38(5)

Current DocID: [GUID-D0D2BB6E-7D09-4246-A466-C267AFABE90D_4_en-US](#)

DOI: https://doi.org/10.31003/USPNF_M45894_04_01

DOI ref: [n1wen](#)