

Status: Currently Official on 15-Feb-2025
Official Date: Official as of 01-May-2020
Document Type: USP Monographs
DocId: GUID-EE0CBB31-5FC4-4D04-AFEA-A8B29C690822_4_en-US
DOI: https://doi.org/10.31003/USPNF_M45872_04_01
DOI Ref: o3bg6

© 2025 USPC
Do not distribute

Lopinavir

$C_{37}H_{48}N_4O_5$ 628.80

[1S-[1R*(R*),3R*,4R*]-N-[4[[2,6-Dimethylphenoxy] acetyl]amino]-3-hydroxy-5-phenyl-1-(phenylmethyl)pentyl]-tetrahydro- α -(1-methylethyl)-2-oxo-1(2H)-pyrimidineacetamide;

(α S)-Tetrahydro-N-[(α S)- α -[(2S,3S)-2-hydroxy-4-phenyl-3-[2-(2,6-xylyloxy)acetamido]butyl]phenethyl]- α -isopropyl-2-oxo-1(2H)-

pyrimidineacetamide CAS RN[®]: 192725-17-0; UNII: 2494G1JF75.

DEFINITION

Lopinavir contains NLT 98.0% and NMT 102.0% of lopinavir ($C_{37}H_{48}N_4O_5$), calculated on the anhydrous basis.

IDENTIFICATION

Change to read:

- A. [▲ SPECTROSCOPIC IDENTIFICATION TESTS \(197\), Infrared Spectroscopy: 197A](#) ▲ (CN 1-MAY-2020)
- B. The retention time of the lopinavir peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.

ASSAY

• PROCEDURE

Buffer: 2.7 g/L of monobasic potassium phosphate and 0.9 g/L of dibasic potassium phosphate in water. Adjust with phosphoric acid to a pH of 6.0. Pass the solution through a suitable filter of 0.45- μ m pore size.

Diluent: Acetonitrile and water (1:1)

Solution A: Acetonitrile and *Buffer* (9:11)

Mobile phase: *Solution A*

Standard solution: 0.025 mg/mL of [USP Lopinavir RS](#) in *Diluent*

Sample solution: 0.025 mg/mL of Lopinavir in *Diluent*

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 215 nm

Column: 4.6-mm \times 25-cm; 4- μ m packing L1

Column temperature: 50°

Flow rate: 1 mL/min

Injection volume: 20 μ L

Run time: 60 min

System suitability

Sample: *Standard solution*

Suitability requirements

Column efficiency: NLT 8000 theoretical plates

Capacity factor: NLT 15

Tailing factor: 0.8–1.5

Relative standard deviation: NMT 2.0%

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of lopinavir ($C_{37}H_{48}N_4O_5$) in the portion of Lopinavir taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_u = peak response from the *Sample solution*

r_s = peak response from the *Standard solution*

C_s = concentration of [USP Lopinavir RS](#) in the *Standard solution* (mg/mL)

C_u = concentration of Lopinavir in the *Sample solution* (mg/mL)

Acceptance criteria: 98.0%–102.0% on the anhydrous basis

IMPURITIES

• [RESIDUE ON IGNITION \(281\)](#): NMT 0.2%

• **ORGANIC IMPURITIES: PROCEDURE 1**

[NOTE—For early-eluting impurities.]

Buffer, Diluent, and Solution A: Prepare as directed in the Assay.

Solution B: Acetonitrile and *Buffer* (3:1)

Mobile phase: See [Table 1](#).

Table 1

Time (min)	Solution A (%)	Solution B (%)
0	100	0
60	100	0
61	0	100
81	0	100
82	100	0
100	100	0

System suitability solution: 0.5 mg/mL of [USP Lopinavir System Suitability Mixture RS](#) in *Diluent*

Standard solution: 0.005 mg/mL of [USP Lopinavir RS](#) in *Diluent*

Sample solution: 0.5 mg/mL of Lopinavir in *Diluent*

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 215 nm

Column: 4.6-mm × 25-cm; 4-μm packing L1

Column temperature: 50°

Flow rate: 1 mL/min

Injection volume: 20 μL

Run time: 100 min

[NOTE—Data collection is only for the first 60 min. The remaining gradient steps wash out the late-eluting impurities and re-equilibrate the column.]

System suitability

Samples: System suitability solution and Standard solution

[NOTE—The relative retention times are listed in [Table 2](#).]

Suitability requirements

Resolution: NLT 1.2 between lopinavir *N*-formylphenoxyacetamide and lopinavir *N*-acetylphenoxyacetamide, *System suitability solution*

Capacity factor: NLT 15, *Standard solution*

Column efficiency: NLT 8000, *Standard solution*

Tailing factor: 0.8–1.5, *Standard solution*

Relative standard deviation: NMT 3.0%, *Standard solution*

Analysis

Samples: *Diluent, System suitability solution, Standard solution, and Sample solution*

Calculate the percentage of each lopinavir related impurity and unidentified impurity in the portion of Lopinavir taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times (1/F) \times 100$$

r_U = peak response of each impurity from the *Sample solution* r_S = peak response of lopinavir from the *Standard solution* C_S = concentration of [USP Lopinavir RS](#) in the *Standard solution* (mg/mL) C_U = concentration of Lopinavir in the *Sample solution* (mg/mL) F = relative response factor (see [Table 2](#))**Table 2**

Name	Relative Retention	Relative Response Factor	Acceptance Criteria, NMT (%)
Lopinavir free amine ^a	0.03	0.61	0.1
Lopinavir N-formylaminoalcohol ^b	0.07	0.80	0.2
Lopinavir divalinate ^c	0.10	0.65	0.1
Sulfolopinavir ^d	0.13	0.76	0.1
Lopinavir phenoxyacetamide ^e	0.25	0.96	0.1
Lopinavir N-formylphenoxyacetamide ^f	0.59	1.3	0.1
Lopinavir N-acetylphenoxyacetamide ^g	0.62	1.2	0.1
Lopinavir oxazine ^h	0.90	1.1	0.1
Lopinavir	1.00	—	—
Isolopinavir ⁱ	1.10	0.99	0.2
Lopinavir 2,4-phenoxy isomer ^j	1.13	0.97	0.1
Lopinavir D-valine diastereomer ^k	1.25	1.1	0.1
Z-Diacylethenediamine ^l	1.28	1.4	0.1
Lopinavir (2R,4R) diastereomer ^m	1.32	1.0	0.1
Lopinavir (4R) epimer ⁿ	1.38	0.97	0.1
Any other individual impurity	—	1.0	0.1

^a (S)-N-[(2S,4S,5S)-5-Amino-4-hydroxy-1,6-diphenylhexan-2-yl]-3-methyl-2-[2-oxotetrahydropyrimidin-1(2H)-yl]butanamide.^b (S)-N-[(2S,4S,5S)-5-Formamido-4-hydroxy-1,6-diphenylhexan-2-yl]-3-methyl-2-[2-oxotetrahydropyrimidin-1(2H)-yl]butanamide.^c (2S,2'S)-N,N'-[(2S,3S,5S)-3-Hydroxy-1,6-diphenylhexane-2,5-diyl]bis{3-methyl-2-[2-oxotetrahydropyrimidin-1(2H)-yl]butanamide}.^d (2S,3S,5S)-2-[2-(2,6-Dimethylphenoxy)acetamido]-5-((S)-3-methyl-2-[2-oxotetrahydropyrimidin-1(2H)-yl]butanamido)-1,6-diphenylhexan-3-yl hydrogen sulfate.^e N-[(2S,3S,5S)-5-Amino-3-hydroxy-1,6-diphenylhexan-2-yl]-2-(2,6-dimethylphenoxy)acetamide.^f 2-(2,6-Dimethylphenoxy)-N-[(2S,3S,5S)-5-formamido-3-hydroxy-1,6-diphenylhexan-2-yl]acetamide.^g N-[(2S,3S,5S)-5-Acetamido-3-hydroxy-1,6-diphenylhexan-2-yl]-2-(2,6-dimethylphenoxy)acetamide.^h N-((S)-1-[(4S,6S)-4-Benzyl-2-oxo-1,3-oxazinan-6-yl]-2-phenylethyl)-2-(2,6-dimethylphenoxy)acetamide.ⁱ (S)-N-[(2S,3S,5S)-5-[2-(2,6-Dimethylphenoxy)acetamido]-3-hydroxy-1,6-diphenylhexan-2-yl]-3-methyl-2-[2-oxotetrahydropyrimidin-1(2H)-yl]butanamide.

- j (S)-N-((2S,4S,5S)-5-[2-(2,4-Dimethylphenoxy)acetamido]-4-hydroxy-1,6-diphenylhexan-2-yl)-3-methyl-2-[2-oxotetrahydropyrimidin-1(2H)-yl]butanamide.
- k (R)-N-((2S,4S,5S)-5-[2-(2,6-Dimethylphenoxy)acetamido]-4-hydroxy-1,6-diphenylhexan-2-yl)-3-methyl-2-[2-oxotetrahydropyrimidin-1(2H)-yl]butanamide.
- l (Z)-N,N'-(Ethene-1,2-diyl)bis[2-(2,6-dimethylphenoxy)acetamide].
- m (S)-N-((2R,4R,5S)-5-[2-(2,6-Dimethylphenoxy)acetamido]-4-hydroxy-1,6-diphenylhexan-2-yl)-3-methyl-2-[2-oxotetrahydropyrimidin-1(2H)-yl]butanamide.
- n (S)-N-((2S,4R,5S)-5-[2-(2,6-Dimethylphenoxy)acetamido]-4-hydroxy-1,6-diphenylhexan-2-yl)-3-methyl-2-[2-oxotetrahydropyrimidin-1(2H)-yl]butanamide.

• ORGANIC IMPURITIES: PROCEDURE 2

[NOTE—For late-eluting impurities.]

Buffer, Diluent, and Solution A: Prepare as directed in the Assay.

Solution B: Acetonitrile and *Buffer* (3:1)

Mobile phase: *Solution A* and *Solution B* (3:7)

System suitability solution: 0.5 mg/mL of [USP Lopinavir System Suitability Mixture RS](#) in *Diluent*

Standard solution: 0.005 mg/mL of [USP Lopinavir RS](#) in *Diluent*

Sample solution: 0.5 mg/mL in *Diluent*

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 215 nm

Column: 4.6-mm × 25-cm; 4-μm packing L1

Column temperature: 50°

Flow rate: 1 mL/min

Injection volume: 20 μL

Run time: 50 min

System suitability

Sample: *Standard solution*

[NOTE—The relative retention times are listed in [Table 3](#).]

Suitability requirements

Capacity factor: NLT 1.5

Column efficiency: NLT 3000

Tailing factor: 0.8–1.5

Relative standard deviation: NMT 3.0%

Analysis

Samples: *Diluent, System suitability solution, Standard solution, and Sample solution*

Calculate the percentage of each lopinavir related impurity and unidentified impurity in the portion of Lopinavir taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times (1/F) \times 100$$

r_U = peak response of each impurity from the *Sample solution*

r_S = peak response of lopinavir from the *Standard solution*

C_S = concentration of [USP Lopinavir RS](#) in the *Standard solution* (mg/mL)

C_U = concentration of Lopinavir in the *Sample solution* (mg/mL)

F = relative response factor (see [Table 3](#))

Table 3

Name	Relative Retention	Relative Response Factor	Acceptance Criteria, NMT (%)
Lopinavir	1.00	—	—
Lopinavir O-acyl ^a	1.49	0.77	0.1
Lopinavir (2R) epimer ^b	1.91	1.1	0.1

Name	Relative Retention	Relative Response Factor	Acceptance Criteria, NMT (%)
Lopinavir diamide ^c	4.39	1.4	0.1
Lopinavir N-acyl ^d	6.01	1.3	0.1
Lopinavir O-phenoxyacetyl ^e	7.14	1.1	0.1
Lopinavir amino alcohol urea ^f	8.46	1.3	0.1
Any other individual impurity	—	1.0	0.1
Total impurities from Procedure 1 and Procedure 2	—	1.0	0.7 ^g

^a (S)-{(2S,3S,5S)-2-[2-(2,6-Dimethylphenoxy)acetamido]-5-[(S)-3-methyl-2-(2-oxotetrahydropyrimidin-1(2H)-yl)butanamido]-1,6-diphenylhexan-3-yl} 3-methyl-2-[2-oxotetrahydropyrimidin-1(2H)-yl]butanoate.

^b (S)-N-((2R,4S,5S)-5-[2-(2,6-Dimethylphenoxy)acetamido]-4-hydroxy-1,6-diphenylhexan-2-yl)-3-methyl-2-[2-oxotetrahydropyrimidin-1(2H)-yl]butanamide.

^c N,N'-(2S,3S,5S)-3-Hydroxy-1,6-diphenylhexane-2,5-diyl]bis[2-(2,6-dimethylphenoxy)acetamide].

^d (S)-N-((2S,4S,5S)-5-[2-(2,6-Dimethylphenoxy)acetamido]-4-hydroxy-1,6-diphenylhexan-2-yl)-2-{3-[2-(2,6-dimethylphenoxy)acetyl]-2-oxotetrahydropyrimidin-1(2H)-yl}-3-methylbutanamide.

^e (2S,3S,5S)-2-[2-(2,6-Dimethylphenoxy)acetamido]-5-((S)-3-methyl-2-[2-oxotetrahydropyrimidin-1(2H)-yl]butanamido)-1,6-diphenylhexan-3-yl 2-(2,6-dimethylphenoxy)acetate.

^f N,N'-(2S,2'S,3S,3'S,5S,5'S)-5,5'-Carbonylbis(azanediyl)bis(3-hydroxy-1,6-diphenylhexane-5,2-diyl)bis[2-(2,6-dimethylphenoxy)acetamide].

^g Exclude from *Organic Impurities*, Procedure 2, lopinavir (4R) epimer and any other peak eluting prior to this peak because these are already monitored in Procedure 1.

Acceptance criteria: See [Table 2](#) and [Table 3](#).

SPECIFIC TESTS

- [WATER DETERMINATION, Method I \(921\)](#): NMT 4.4%

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in tight containers. Store at room temperature.

- [USP REFERENCE STANDARDS \(11\)](#)

[USP Lopinavir RS](#)

[USP Lopinavir System Suitability Mixture RS](#)

Lopinavir System Suitability Mixture contains lopinavir N-formylphenoxyacetamide, lopinavir N-acetylphenoxyacetamide, and several other minor components.

Lopinavir N-formylphenoxyacetamide is (2-(2,6-dimethylphenoxy)-N-[(2S,3S,5S)-5-formamido-3-hydroxy-1,6-diphenylhexan-2-yl]acetamide.
 $C_{29}H_{34}N_2O_4$ 474.59

Lopinavir N-acetylphenoxyacetamide is (N-[(2S,3S,5S)-5-acetamido-3-hydroxy-1,6-diphenylhexan-2-yl]-2-(2,6-dimethylphenoxy)acetamide. $C_{30}H_{36}N_2O_4$ 488.62

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
LOPINAVIR	Documentary Standards Support	SM12020 Small Molecules 1

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 37(6)

Current DocID: GUID-EE0CBB31-5FC4-4D04-AFEA-A8B29C690822_4_en-US

DOI: https://doi.org/10.31003/USPNF_M45872_04_01

DOI ref: o3bg6