

Status: Currently Official on 15-Feb-2025
Official Date: Official as of 01-Aug-2013
Document Type: USP Monographs
DocId: GUID-E746E5FA-185E-478F-AF18-A2C89BF59133_1_en-US
DOI: https://doi.org/10.31003/USPNF_M2111_01_01
DOI Ref: 165th

© 2025 USPC
Do not distribute

Lopinavir and Ritonavir Tablets

DEFINITION

Lopinavir and Ritonavir Tablets contain NLT 90.0% and NMT 110.0% of the labeled amounts of lopinavir ($C_{37}H_{48}N_4O_5$) and ritonavir ($C_{37}H_{48}N_6O_5S_2$).

IDENTIFICATION

- **A.** The retention times of the major peaks of the *Sample solution* correspond to those of the *Standard solution*, as obtained in the *Assay*.

ASSAY

• LOPINAVIR AND RITONAVIR

Buffer 1: 4.1 g/L of monobasic potassium phosphate in water

Solution A: Acetonitrile and *Buffer 1* (50:50)

Buffer 2: 2.1 g/L of monobasic potassium phosphate in water

Solution B: Acetonitrile and 1-butanol (13:3)

Solution C: Acetonitrile, 1-butanol, *Buffer 1*, and water (65:15:10:10)

Standard solution: 6.25 µg/mL of [USP Ritonavir RS](#) and 25 µg/mL of [USP Lopinavir RS](#) in *Solution A*

Sample solution: Place a number of Tablets equivalent to 1000 mg of lopinavir and 250 mg of ritonavir in a 250-mL volumetric flask, add 25 mL of *Buffer 2*, and agitate to dissolve the Tablet coating, if necessary. Add 100 mL of *Solution B*, and shake mechanically until the Tablets are dissolved. Dilute with *Solution C* to volume. Centrifuge a portion of this solution, and then further dilute with *Solution A* to a nominal concentration of 6.25 µg/mL of ritonavir and 25 µg/mL of lopinavir.

Mobile phase: Acetonitrile, methanol, tetrahydrofuran, and *Buffer 1* (175:100:100:625)

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 215 nm

Column: 4.6-mm × 15-cm; 5-µm packing L7

Column temperature: 40°

Flow rate: 1.5 mL/min

Injection volume: 50 µL

System suitability

Sample: *Standard solution*

[NOTE—The elution order is ritonavir, then lopinavir.]

Suitability requirements

Capacity factor: 15–24 for the ritonavir peak

Tailing factor: 0.8–1.2 for the ritonavir peak

Theoretical plates: More than 5000 for the ritonavir peak

Relative standard deviation: NMT 2.0% for the ritonavir and lopinavir peaks

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of the labeled amount of lopinavir ($C_{37}H_{48}N_4O_5$) and ritonavir ($C_{37}H_{48}N_6O_5S_2$) in the portion of Tablets taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_u = peak response of lopinavir or ritonavir from the *Sample solution*

r_s = peak response of lopinavir or ritonavir from the *Standard solution*

C_S = concentration of lopinavir or ritonavir in the *Standard solution* ($\mu\text{g/mL}$)

C_U = nominal concentration of lopinavir or ritonavir in the *Sample solution* ($\mu\text{g/mL}$)

Acceptance criteria: 90.0%–110.0% of the labeled amounts of lopinavir ($\text{C}_{37}\text{H}_{48}\text{N}_4\text{O}_5$) and ritonavir ($\text{C}_{37}\text{H}_{48}\text{N}_6\text{O}_5\text{S}_2$)

PERFORMANCE TESTS

- **Dissolution (711)**

Medium: 60 mM polyoxyethylene 10 lauryl ether (37.56 g/L) in water; 900 mL

Apparatus 2: 75 rpm

Time: 90 min

Mobile phase: Acetonitrile and 4.1 g/L potassium phosphate monobasic (55:45). Adjust with phosphoric acid to an apparent pH of 4.0 ± 0.05 .

Standard solution: Dissolve [USP Lopinavir RS](#) in methanol to obtain a solution containing 2.6 mg/mL. Dissolve [USP Ritonavir RS](#) in methanol to obtain a solution containing 1.3 mg/mL. Combine portions of these solutions to make a solution containing approximately 0.104 mg/mL of lopinavir and 0.026 mg/mL of ritonavir in *Medium*.

Sample solutions: Pass a portion of the solution under test through a suitable filter. If necessary, dilute the solution with *Medium* to obtain a final sample solution containing approximately 0.104 mg/mL of lopinavir and 0.026 mg/mL of ritonavir.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 215 nm

Column: 4.6-mm \times 15-cm; 5- μm packing L1

Flow rate: 1.5 mL/min

Injection volume: 25 μL

System suitability

Sample: *Standard solution*

Suitability requirements

Resolution: NLT 2.0 between lopinavir and ritonavir

Tailing factor: 0.9–1.5 for the lopinavir and ritonavir peaks

Relative standard deviation: NMT 2.0% for the lopinavir and ritonavir peaks

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of lopinavir ($\text{C}_{37}\text{H}_{48}\text{N}_4\text{O}_5$) and ritonavir ($\text{C}_{37}\text{H}_{48}\text{N}_6\text{O}_5\text{S}_2$) dissolved:

$$\text{Result} = (r_U/r_S) \times (C_S/L) \times D \times V \times 100$$

r_U = peak response of lopinavir or ritonavir from the *Sample solution*

r_S = peak response of lopinavir or ritonavir from the *Standard solution*

C_S = concentration of [USP Lopinavir RS](#) or [USP Ritonavir RS](#) in the *Standard solution* (mg/mL)

L = Tablet label claim for lopinavir or ritonavir (mg)

D = dilution factor of the *Sample solution*

V = volume of *Medium*, 900 mL

Tolerances: NLT 80% (Q) of the labeled amounts of lopinavir ($\text{C}_{37}\text{H}_{48}\text{N}_4\text{O}_5$) and ritonavir ($\text{C}_{37}\text{H}_{48}\text{N}_6\text{O}_5\text{S}_2$) are dissolved.

- **Uniformity of Dosage Units (905):** Meet the requirements

IMPURITIES

- **Organic Impurities**

Buffer 1: 4.1 g/L of monobasic potassium phosphate in water

Solution A: *Buffer 1* and acetonitrile (50:50)

Buffer 2: 2.1 g/L of monobasic potassium phosphate in water

Solution B: Acetonitrile, 1-butanol, and *Buffer 1* (15:5:80)

Solution C: Acetonitrile, 1-butanol, *Buffer 1*, and water (65:15:10:10)

Solution D: Acetonitrile and 1-butanol (13:3)

Buffer solution: 3.8 g/L of monobasic potassium phosphate and 0.25 g/L of dibasic potassium phosphate in water

Mobile phase: Acetonitrile, tetrahydrofuran, 1-butanol, and *Buffer solution* (18:8:5:69). Adjust with 1 M phosphoric acid or 1 M potassium hydroxide, if necessary, to a pH of 6.3 ± 0.1.

Standard stock solution: 0.025 mg/mL of [USP Ritonavir RS](#) in *Solution A*

Standard solution: 2.5 µg/mL of [USP Ritonavir RS](#) in *Solution B* from *Standard stock solution*

Ritonavir degradant identification solution: Transfer two 5.0 mL portions of a 1 mg/mL solution of [USP Ritonavir RS](#) in *Solution A* to separate 50-mL volumetric flasks. Add 1 g of citric acid to one flask, and shake until dissolved. Heat both flasks at 80° for approximately 24 h. Cool the flasks, and add 13 mL of 1 N sodium hydroxide to the flask containing the citric acid. Dilute both flasks with *Solution B* to volume. Combine equal volumes of both solutions. This solution contains ritonavir and the ritonavir degradation products (*N*-deacylvaline ritonavir, hydantoin aminoalcohol, *O*-acyl isomer, and oxazolidinone derivative).

Ritonavir related compounds identification solution: 1 mg/mL of [USP Ritonavir Related Compounds Mixture RS](#) dissolved in *Solution C* and further diluted with *Solution B* to 0.5 mg/mL.

Sample solution: Place a number of Tablets equivalent to 1000 mg of lopinavir and 250 mg of ritonavir into a 250-mL volumetric flask. Add 25 mL of *Buffer 2*, and agitate to dissolve the Tablet coating, if necessary. Add 100 mL of *Solution D*, and shake mechanically until the Tablets are dissolved. Dilute with *Solution C* to volume. Centrifuge a portion of this solution, and further dilute with *Solution B* to a concentration of 2 mg/mL of lopinavir and 0.5 mg/mL of ritonavir.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Column: 4.6-mm × 15-cm; 3-µm packing L26

Column temperature: 60°

Detector: UV 240 nm

Injection volume: 50 µL

Flow rate: 1.0 mL/min

System suitability

Samples: Ritonavir degradant identification solution, Ritonavir related compounds identification solution, and Standard solution

Suitability requirements

Resolution: NLT 1.0 between the peaks for *O*-acyl isomer and oxazolidinone derivative, Ritonavir degradant identification solution. NLT 0.7 between the peaks for hydroxyritonavir and hydantoin aminoalcohol, Ritonavir related compounds identification solution

Capacity factor: NLT 10.8, Standard solution

Tailing factor: 0.8–1.2, Standard solution

Column efficiency: NLT 5000, Standard solution

Relative standard deviation: NMT 5.0%, Standard solution

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of each ritonavir degradation product in the Sample solution:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times (1/F) \times 100$$

r_U = peak area of individual degradation product from the Sample solution

r_S = peak response of ritonavir from the Standard solution

C_S = concentration of [USP Ritonavir RS](#) in the Standard solution (mg/mL)

C_U = nominal concentration of ritonavir in the Sample solution (mg/mL)

F = relative response factor

Acceptance criteria: See [Table 1](#). [NOTE—Disregard all peaks eluting before the retention time of the *N*-deacylvaline ritonavir peak from the Ritonavir degradant identification solution.]

Table 1

Name	Relative Retention	Relative Response Factor	Acceptance Criteria, NMT (%)
N-Deacylvaline ritonavir ^a	0.11	0.81	0.2

Name	Relative Retention	Relative Response Factor	Acceptance Criteria, NMT (%)
Acetamidoalcohol ^b	0.15	—	—*
2,5-Thiazolylmethyl dicarbamate ^c	0.24	—	—*
Hydroxyritonavir ^d	0.36	0.86	0.3
Hydantoin aminoalcohol ^e	0.39	0.73	2.6
Ritonavir hydroperoxide ^f	0.44	0.88	0.2
Hydantoin-oxazolidinone derivative ^g	0.50	—	—*
Ethyl analog ^h	0.64	—	—*
O-Acyl isomer ⁱ	0.74	1.1	0.2
BOC-aminoalcohol ^j	0.81	—	—*
Isobutoxycarbonyl aminoalcohol ^k	0.81	—	—*
Oxazolidinone derivative ^l	0.87	0.53	0.3
Ureidovaline isobutyl ester ^m	0.94	—	—*
Ritonavir	1.0	—	—*
4-Hydroxy isomer ⁿ	1.05	—	—*
3R-Epimer ^o	1.11	—	—*
Aminoalcohol urea derivative ^p	1.14	—	—*
3R,5R-Epimer ^q	1.23	—	—*
5R-Epimer ^r	1.32	—	—*
Diacyl valine urea ^s	1.70	—	—*
Any unspecified impurity	—	1.0	0.2**
Total impurities	—	—	3.5**

* Process impurities; for information only.

** Disregard any peak less than 0.05%.

- ^a Thiazol-5-ylmethyl (2S,3S,5S)-5-[(S)-2-amino-3-methylbutanamido]-3-hydroxy-1,6-diphenylhexan-2-ylcarbamate.
- ^b Thiazol-5-ylmethyl (2S,3S,5S)-5-acetamido-3-hydroxy-1,6-diphenylhexan-2-ylcarbamate.
- ^c Bis(thiazol-5-ylmethyl) (2S,3S,5S)-3-hydroxy-1,6-diphenylhexane-2,5-diyldicarbamate.
- ^d Thiazol-5-ylmethyl (2S,3S,5S)-3-hydroxy-5-[(S)-2-(3-[(2-(2-hydroxypropan-2-yl)thiazol-4-yl)methyl]-3-methylureido)-3-methylbutanamido]-1,6-diphenylhexan-2-ylcarbamate.
- ^e Thiazol-5-ylmethyl (2S,3S,5S)-3-hydroxy-5-[(S)-4-isopropyl-2,5-dioxoimidazolidin-1-yl]-1,6-diphenylhexan-2-ylcarbamate.
- ^f Thiazol-5-ylmethyl (2S,3S,5S)-5-[(S)-2-(3-[(2-(2-hydroperoxypropan-2-yl)thiazol-4-yl)methyl]-3-methylureido)-3-methylbutanamido]-3-hydroxy-1,6-diphenylhexan-2-ylcarbamate.
- ^g (4S,5S)-Thiazol-5-ylmethyl 4-benzyl-5-[(S)-2-[(S)-4-isopropyl-2,5-dioxoimidazolidin-1-yl]-3-phenylpropyl]-2-oxooxazolidine-3-carboxylate.
- ^h Thiazol-5-ylmethyl (2S,3S,5S)-5-[(S)-2-{3-[(2-ethylthiazol-4-yl)methyl]-3-methylureido}-3-methylbutanamido]-3-hydroxy-1,6-diphenylhexan-2-ylcarbamate.
- ⁱ (S)-{(2S,3S,5S)-5-Amino-1,6-diphenyl-2-[(thiazol-5-ylmethoxy)carbonylamino]hexan-3-yl} 2-{3-[(2-isopropylthiazol-4-yl)methyl]-3-methylureido}-3-methylbutanoate.
- ^j Thiazol-5-ylmethyl (2S,3S,5S)-(5-t-butoxycarbonylamino)-3-hydroxy-1,6-diphenylhexan-2-ylcarbamate.
- ^k Thiazol-5-ylmethyl (2S,3S,5S)-(5-isobutoxycarbonylamino)-3-hydroxy-1,6-diphenylhexan-2-ylcarbamate.
- ^l (S)-N-[(S)-1-[(4S,5S)-4-Benzyl-2-oxooxazolidin-5-yl]-3-phenylpropan-2-yl]-2-{3-[(2-isopropylthiazol-4-yl)methyl]-3-methylureido}-3-methylbutanamide.
- ^m (S)-Isobutyl 2-{3-[(2-isopropylthiazol-4-yl)methyl]-3-methylureido}-3-methylbutanoate.
- ⁿ Thiazol-5-ylmethyl (2S,4S,5S)-4-hydroxy-5-[(S)-2-{3-[(2-isopropylthiazol-4-yl)methyl]-3-methylureido}-3-methylbutanamido]-1,6-diphenylhexan-2-ylcarbamate.
- ^o Thiazol-5-ylmethyl (2S,3R,5S)-3-hydroxy-5-[(S)-2-{3-[(2-isopropylthiazol-4-yl)methyl]-3-methylureido}-3-methylbutanamido]-1,6-diphenylhexan-2-ylcarbamate.
- ^p Bis(thiazol-5-ylmethyl) (2S,2'S,3S,3'S,5S,5'S)-5,5'-carbonylbis(azanediyl)bis(3-hydroxy-1,6-diphenylhexane-5,2-diyldicarbamate).
- ^q Thiazol-5-ylmethyl (2S,3R,5R)-3-hydroxy-5-[(S)-2-{3-[(2-isopropylthiazol-4-yl)methyl]-3-methylureido}-3-methylbutanamido]-1,6-diphenylhexan-2-ylcarbamate.
- ^r Thiazol-5-ylmethyl (2S,3S,5R)-3-hydroxy-5-[(S)-2-{3-[(2-isopropylthiazol-4-yl)methyl]-3-methylureido}-3-methylbutanamido]-1,6-diphenylhexan-2-ylcarbamate.
- ^s (3S,4S,6S,10S,13S,15S,16S)-Bis(thiazol-5-ylmethyl)-4,15-dihydroxy-10-isopropyl-8,11-dioxo-3,6,13,16-tetraabenzylo-2,7,9,12,17-pentaazaoctadecanedioate.

ADDITIONAL REQUIREMENTS

- **USP REFERENCE STANDARDS (11).**

[USP Lopinavir RS](#)

[USP Ritonavir RS](#)

[USP Ritonavir Related Compounds Mixture RS](#)

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
LOPINAVIR AND RITONAVIR TABLETS	Documentary Standards Support	SM12020 Small Molecules 1
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM12020 Small Molecules 1

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 43(4)

Current DocID: [GUID-E746E5FA-185E-478F-AF18-A2C89BF59133_1_en-US](#)

OFFICIAL