

Status: Currently Official on 15-Feb-2025
Official Date: Official as of 01-May-2024
Document Type: USP Monographs
DocId: GUID-39CB8905-764C-44B9-83C8-4E4D5D5508F6_2_en-US
DOI: https://doi.org/10.31003/USPNF_M45490_02_01
DOI Ref: qja3z

© 2025 USPC
Do not distribute

Add the following:

^Liothyronine Sodium Injection

DEFINITION

Liothyronine Sodium Injection contains an amount of liothyronine sodium ($C_{15}H_{11}I_3NNaO_4$) equivalent to NLT 90.0% and NMT 115.0% of the labeled amount of liothyronine ($C_{15}H_{12}I_3NO_4$).

IDENTIFICATION

- **A.** The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.
- **B.** The UV spectrum of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.

ASSAY

• PROCEDURE

Solutions containing liothyronine should be protected from light.

Buffer: 5.8 g/L of [dibasic sodium phosphate anhydrous](#) and 3.5 g/L of [monobasic potassium phosphate, anhydrous](#) in [water](#). Adjust with [phosphoric acid](#) to a pH of 3.0.

Mobile phase: [Methanol](#) and **Buffer** (55:45)

Diluent: Dilute hydrochloric acid in [water](#) (1:50), and then add the same volume of [methanol](#).

Standard solution: 1 μ g/mL of [USP Liothyronine RS](#) in [Diluent](#)

Sample solution: Nominally 1 μ g/mL of liothyronine from [Injection](#) in [Diluent](#)

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 225 nm. For *Identification B*, use a diode array detector in the range of 200–400 nm.

Column: 4-mm \times 8-cm; 5- μ m packing [L7](#)

Flow rate: 1.25 mL/min

Injection volume: 20 μ L

Run time: NLT 2.5 times the retention time of liothyronine

System suitability

Sample: *Standard solution*

Suitability requirements

Tailing factor: NMT 2.0

Relative standard deviation: NMT 1.0%

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of the labeled amount of liothyronine ($C_{15}H_{12}I_3NO_4$) in the portion of [Injection](#) taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

r_U = peak response of liothyronine from the *Sample solution*

r_S = peak response of liothyronine from the *Standard solution*

C_S = concentration of [USP Liothyronine RS](#) in the *Standard solution* (μ g/mL)

C_U = nominal concentration of liothyronine in the *Sample solution* (μ g/mL)

Acceptance criteria: 90.0%–115.0%

IMPURITIES**• ORGANIC IMPURITIES**

Solutions containing liothyronine should be protected from light.

Solution A: 4.9 g/L of [sulfamic acid](#) and 0.8 g/L of sodium hydroxide in [water](#). Adjust with [10 N sodium hydroxide TS](#) to a pH of 2.0.

Solution B: [Acetonitrile](#)

Mobile phase: See [Table 1](#).

Table 1

Time (min)	Solution A (%)	Solution B (%)
0	90	10
3	90	10
6	70	30
14	70	30
44	20	80
54	20	80
56	90	10
60	90	10

Diluent: 0.175 g/L of citric acid, anhydrous, 71.5 mL/L of [absolute alcohol](#), and 8.5 mL/L of [ammonium hydroxide](#) in [water](#) prepared as follows. Transfer an appropriate amount of citric acid, anhydrous to a suitable flask and dissolve in 20% of the flask volume of [water](#). To this solution, add appropriate amounts of [absolute alcohol](#) and [ammonium hydroxide](#), and then dilute with [water](#) to volume.

Standard solution: 0.03 µg/mL of [USP Liothyronine RS](#) in [Diluent](#). Sonicate to dissolve, if necessary.

Sensitivity solution: 0.01 µg/mL of [USP Liothyronine RS](#) from the [Standard solution](#) in [Diluent](#)

Sample solution: Nominally 10 µg/mL of liothyronine from [Injection](#)

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 225 nm

Column: 4-mm × 15-cm; 3-µm packing [L1](#)

Flow rate: 1 mL/min

Injection volume: 150 µL

System suitability

Samples: [Standard solution](#) and [Sensitivity solution](#)

[**NOTE**—The relative retention times in [Table 2](#) are provided as information that could aid in peak assignment.]

Table 2

Name	Relative Retention Time
Diiodotyrosine ^a	0.4
Diiodothyronine ^b	0.6
Liothyronine	1.0

Name	Relative Retention Time
Levothyroxine ^c	1.2
Triiodothyroacetic acid ^d	1.7
Tetraiodothyroacetic acid ^e	1.9

^a 3,5-Diiodo-L-tyrosine.^b O-(4-Hydroxyphenyl)-3,5-diiodo-L-tyrosine.^c O-(4-Hydroxy-3,5-diiodophenyl)-3,5-diiodo-L-tyrosine.^d [4-(4-Hydroxy-3-iodophenoxy)-3,5-diiodophenyl]acetic acid.^e [4-(4-Hydroxy-3,5-diiodophenoxy)-3,5-diiodophenyl]acetic acid.**Suitability requirements****Relative standard deviation:** NMT 5.0%, *Standard solution***Signal-to-noise ratio:** NLT 10, *Sensitivity solution***Analysis****Samples:** *Standard solution* and *Sample solution*

Calculate the percentage of each degradation product in the portion of Injection taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times (1/F) \times 100$$

 r_U = peak response of each degradation product from the *Sample solution* r_S = peak response of liothyronine from the *Standard solution* C_S = concentration of [USP Liothyronine RS](#) in the *Standard solution* ($\mu\text{g/mL}$) C_U = nominal concentration of liothyronine in the *Sample solution* ($\mu\text{g/mL}$) F = relative response factor (see [Table 3](#))**Acceptance criteria:** See [Table 3](#). The reporting threshold is 0.1%.**Table 3**

Name	Relative Response Factor	Acceptance Criteria, NMT (%)
Diiodotyrosine	0.77	10.0
Triiodothyroacetic acid	1.25	0.5
Any unspecified degradation product	1.0	1.0
Total impurities ^a	—	5.0

^a Total impurities excludes diiodotyrosine.**SPECIFIC TESTS**

- [STERILITY TESTS \(71\)](#): Meets the requirements
- [pH \(791\)](#): 9.5–11.5
- [BACTERIAL ENDOTOXINS TEST \(85\)](#): Meets the requirements
- [PARTICULATE MATTER IN INJECTIONS \(788\)](#): Meets the requirements

- OTHER REQUIREMENTS: It meets the requirements in [Injections and Implanted Drug Products \(1\)](#).

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in single-dose light-resistant containers. Store in a refrigerator.

- [USP REFERENCE STANDARDS \(11\)](#).

[USP Liothyronine RS](#)

L-3-[4-(4-Hydroxy-3-iodophenoxy)-3,5-diiodophenyl]alanine.

$C_{15}H_{12}I_3NO_4$ 650.98▲ (USP 1-May-2024)

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
LIOTHYRONINE SODIUM INJECTION	Documentary Standards Support	SM32020 Small Molecules 3
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM32020 Small Molecules 3

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. 48(6)

Current DocID: [GUID-39CB8905-764C-44B9-83C8-4E4D5D5508F6_2_en-US](#)

DOI: https://doi.org/10.31003/USPNF_M45490_02_01

DOI ref: [qja3z](#)