

Status: Currently Official on 15-Feb-2025
Official Date: Official as of 01-Apr-2024
Document Type: USP Monographs
DocId: GUID-D615982A-5B73-4FCC-8A33-B96A726A9D37_8_en-US
DOI: https://doi.org/10.31003/USPNF_M45070_08_01
DOI Ref: q3vdf

© 2025 USPC
Do not distribute

Lidocaine

C₁₄H₂₂N₂O 234.34

Acetamide, 2-(diethylamino)-N-(2,6-dimethylphenyl)-;
2-(Diethylamino)-2',6'-acetoxylidide CAS RN®: 137-58-6; UNII: 98PI200987.

DEFINITION

Lidocaine contains NLT 97.5% and NMT 102.5% of lidocaine (C₁₄H₂₂N₂O).

IDENTIFICATION

- A. **SPECTROSCOPIC IDENTIFICATION TESTS (197), Infrared Spectroscopy: 197K** [NOTE—Methods described under (197K) or (197A) may be used.]
Sample: Previously dried under vacuum over silica gel for 24 h
Acceptance criteria: Meets the requirements
- B. The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.

ASSAY

Change to read:

• PROCEDURE

Solution A: [Water](#) and [glacial acetic acid](#) (930:50). Adjust with [1 N sodium hydroxide](#) to a pH of 3.4.

Mobile phase: Acetonitrile and *Solution A* (20:80)

Standard solution: 1.7 mg/mL of [USP Lidocaine RS](#) in *Mobile phase*, prepared as follows. Dissolve 85 mg of [USP Lidocaine RS](#) with 0.5 mL of [1 N hydrochloric acid](#), warming if necessary, in a 50-mL flask. Dilute with *Mobile phase* to volume.

System suitability stock solution: 220 µg/mL of methylparaben in *Mobile phase*

System suitability solution: Mix 2 mL of *System suitability stock solution* and 20 mL of *Standard solution*.

Sample solution: 1.7 mg/mL of Lidocaine in *Mobile phase*, prepared as follows. Dissolve 85 mg of Lidocaine with 0.5 mL of [1 N hydrochloric acid](#), warming if necessary, in a 50-mL flask. Dilute with *Mobile phase* to volume.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 254 nm

Column: 3.9-mm × 30-cm; ▲10-µm▲ (ERR 1-Apr-2024) backing [L1](#)

Flow rate: 1.5 mL/min

Injection volume: 20 µL

System suitability

Samples: *Standard solution* and *System suitability solution*

Suitability requirements

Resolution: NLT 3.0 between lidocaine and methylparaben, *System suitability solution*

Relative standard deviation: NMT 1.5%, *Standard solution*

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of lidocaine (C₁₄H₂₂N₂O) in the portion of Lidocaine taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

r_U = peak response of lidocaine from the *Sample solution*

r_S = peak response of lidocaine from the *Standard solution*

C_s = concentration of [USP Lidocaine RS](#) in the *Standard solution* (mg/mL) C_u = concentration of Lidocaine in the *Sample solution* (mg/mL)**Acceptance criteria:** 97.5%–102.5%**IMPURITIES****• [RESIDUE ON IGNITION \(281\)](#):** NMT 0.1%**• [CHLORIDE AND SULFATE \(221\), Chloride](#)****Sample:** 1.0 g**Analysis:** Dissolve the *Sample* in a mixture of 3 mL of 2 N [nitric acid](#) and 12 mL of [water](#), and add 1 mL of silver nitrate TS.**Acceptance criteria:** The turbidity does not exceed that produced by 50 μ L of 0.020 N [hydrochloric acid](#) (NMT 0.0035%).**• [CHLORIDE AND SULFATE \(221\), Sulfate](#)****Sample:** 100 mg**Analysis:** Dissolve the *Sample* in a mixture of 1 mL of 2 N [nitric acid](#) and 10 mL of [water](#). Filter if necessary, and add 1 mL of [barium chloride TS](#).**Acceptance criteria:** The turbidity does not exceed that produced by 0.10 mL of 0.020 N [sulfuric acid](#) (NMT 0.1%).**• ORGANIC IMPURITIES****Solution A:** 4.85 g/L of [monobasic potassium phosphate](#) in [water](#). Adjust with [sodium hydroxide](#) solution to a pH of 8.0.**Mobile phase:** [Acetonitrile](#) and *Solution A* (30:70)**Standard solution:** 0.5 μ g/mL of [USP Ropivacaine Related Compound A RS](#) and 5 μ g/mL each of [USP Lidocaine Related Compound H RS](#) and [USP Lidocaine RS](#) in *Mobile phase***Sample solution:** 5 mg/mL of Lidocaine in *Mobile phase***Chromatographic system**(See [Chromatography \(621\), System Suitability](#).)**Mode:** LC**Detector:** UV 230 nm**Column:** 3.9-mm \times 15-cm; 5- μ m packing [L1](#)**Column temperature:** 30°**Flow rate:** 1 mL/min**Injection volume:** 20 μ L**System suitability****Sample:** *Standard solution*[NOTE—See [Table 1](#) for relative retention times.]**Suitability requirements****Resolution:** NLT 1.5 between the lidocaine related compound H and 2,6-dimethylaniline (ropivacaine related compound A free base) peaks**Relative standard deviation:** NMT 10.0% for 2,6-dimethylaniline**Analysis****Samples:** *Standard solution* and *Sample solution*

Calculate the percentage of lidocaine related compound H in the portion of Lidocaine taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

 r_u = peak response of lidocaine related compound H from the *Sample solution* r_s = peak response of lidocaine related compound H from the *Standard solution* C_s = concentration of [USP Lidocaine Related Compound H RS](#) in the *Standard solution* (μ g/mL) C_u = concentration of Lidocaine in the *Sample solution* (μ g/mL)

Calculate the percentage of 2,6-dimethylaniline (ropivacaine related compound A free base) in the portion of Lidocaine taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times (M_{r1}/M_{r2}) \times 100$$

 r_u = peak response of 2,6-dimethylaniline from the *Sample solution* r_s = peak response of 2,6-dimethylaniline from the *Standard solution* C_s = concentration of [USP Ropivacaine Related Compound A RS](#) in the *Standard solution* (μ g/mL) C_u = concentration of Lidocaine in the *Sample solution* (μ g/mL) M_{r1} = molecular weight of 2,6-dimethylaniline, 121.18

M_{r2} = molecular weight of ropivacaine related compound A, 157.64

Calculate the percentage of any unspecified impurity in the portion of Lidocaine taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

 r_u = peak response of each unspecified impurity from the *Sample solution* r_s = peak response of lidocaine from the *Standard solution* C_s = concentration of [USP Lidocaine RS](#) in the *Standard solution* (µg/mL) C_u = concentration of Lidocaine in the *Sample solution* (µg/mL)**Acceptance criteria:** See [Table 1](#).**Table 1**

Name	Relative Retention Time	Acceptance Criteria, NMT (%)
Lidocaine related compound H	0.38	0.10
2,6-Dimethylaniline	0.42	0.01
Lidocaine	1.0	—
Any unspecified impurity	—	0.10
Total impurities	—	0.5

ADDITIONAL REQUIREMENTS**• PACKAGING AND STORAGE:** Preserve in well-closed containers. Store at room temperature.**• USP REFERENCE STANDARDS (11).**[USP Lidocaine RS](#)[USP Lidocaine Related Compound H RS](#)

2-Chloro-N-(2,6-dimethylphenyl)acetamide.

 $C_{10}H_{12}ClNO$ 197.66[USP Ropivacaine Related Compound A RS](#)

2,6-Dimethylaniline hydrochloride.

 $C_8H_{11}N \cdot HCl$ 157.64**Auxiliary Information** - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
LIDOCAINE	Documentary Standards Support	SM52020 Small Molecules 5

Chromatographic Database Information: [Chromatographic Database](#)**Most Recently Appeared In:**

Pharmacopeial Forum: Volume No. PF 43(3)

Current DocID: GUID-D615982A-5B73-4FCC-8A33-B96A726A9D37_8_en-US**DOI: https://doi.org/10.31003/USPNF_M45070_08_01****DOI ref: [q3vdf](#)**