

Status: Currently Official on 15-Feb-2025
Official Date: Official as of 01-May-2021
Document Type: USP Monographs
DocId: GUID-F5B612F7-5E5F-429B-A8F3-119775C6D2EF_2_en-US
DOI: https://doi.org/10.31003/USPNF_M44775_02_01
DOI Ref: 3a37u

© 2025 USPC
Do not distribute

Levofloxacin Tablets

DEFINITION

Levofloxacin Tablets contain NLT 90.0% and NMT 110.0% of the labeled amount of levofloxacin ($C_{18}H_{20}FN_3O_4$).

IDENTIFICATION

- A. The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.

Add the following:

- ▲ B. The UV absorption spectrum of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.▲ (USP 1-May-2021)

ASSAY

Change to read:

- PROCEDURE

Diluent: [Acetonitrile](#) and [water](#) (20:80)

Mobile phase: Transfer 874 mg of [cupric sulfate](#), 918 mg of [L-isoleucine](#), and 5.94 g of [ammonium acetate](#) to a suitable container. Add 700 mL of [water](#), and mix until dissolved. Add 300 mL of [methanol](#).

Standard stock solution: 2 mg/mL of [USP Levofloxacin RS](#) in *Diluent*. ▲Sonicate, if necessary, to dissolve prior to final dilution.▲ (USP 1-May-2021)

Standard solution: 0.2 mg/mL of [USP Levofloxacin RS](#) in *Mobile phase* from the *Standard stock solution*

Sample stock solution: Nominally 5 mg/mL of levofloxacin prepared as follows. Transfer intact Tablets (NLT 5) to a volumetric flask, add 75% of the final volume of *Diluent*, and allow to stand for 15 min. Shake for 30 min, and dilute with *Diluent* to volume. Pass a portion of the solution through a suitable filter of 0.45- μ m pore size, discarding the first 1–2 mL of the filtrate.

Sample solution: Nominally 0.2 mg/mL of levofloxacin in *Mobile phase* from the *Sample stock solution*

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 360 nm. ▲For *Identification B*, use a diode array detector in the range of 220–400 nm.▲ (USP 1-May-2021)

Column: 4.6-mm \times 25-cm; 5- μ m packing [L1](#)

Column temperature: 45°

Flow rate: 0.8 mL/min

Injection volume: 25 μ L

Run time: 2 times the retention time of levofloxacin

System suitability

Sample: *Standard solution*

Suitability requirements

Tailing factor: NMT 1.8

Relative standard deviation: NMT 2.0%

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of the labeled amount of levofloxacin ($C_{18}H_{20}FN_3O_4$) in the portion of Tablets taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

r_U = peak response of levofloxacin from the *Sample solution*

r_S = peak response of levofloxacin from the *Standard solution*

C_S = concentration of [USP Levofloxacin RS](#) in the *Standard solution* (mg/mL)

C_U = nominal concentration of levofloxacin in the *Sample solution* (mg/mL)

Acceptance criteria: 90.0%–110.0%

PERFORMANCE TESTS**• Dissolution (711)****Test 1****Medium:** 0.1 N [hydrochloric acid](#); 900 mL**Apparatus 2:** 75 rpm**Time:** 30 min**Standard solution:** 0.56 mg/mL of [USP Levofloxacin RS](#) in *Medium***Sample solution:** Pass a portion of the solution under test through a suitable filter of 0.45- μ m pore size.**Instrumental conditions**(See [Ultraviolet-Visible Spectroscopy \(857\)](#).)**Mode:** UV**Analytical wavelength:** 294 nm**Cell length:** 0.1 mm**Blank:** *Medium***Analysis****Samples:** *Standard solution* and *Sample solution*Calculate the percentage (*Q*) of the labeled amount of levofloxacin ($C_{18}H_{20}FN_3O_4$) dissolved:

$$\text{Result} = (A_U/A_S) \times C_S \times V \times D \times (1/L) \times 100$$

 A_U = absorbance of the *Sample solution* A_S = absorbance of the *Standard solution* C_S = concentration of the *Standard solution* (mg/mL) V = volume of *Medium*, 900 mL D = dilution factor of the *Sample solution* L = label claim (mg/Tablet)**Tolerances:** NLT 80% (*Q*) of the labeled amount of levofloxacin ($C_{18}H_{20}FN_3O_4$) is dissolved.**Test 2****Medium:** 0.1 N [hydrochloric acid](#); 900 mL**Apparatus 1:** 100 rpm**Time:** 30 min**Standard solution:** $L/900$ mg/mL of [USP Levofloxacin RS](#) in *Medium*. Mix to obtain solutions with known concentrations as indicated in [Table 1](#), where L is the label claim in mg/Tablet.**Sample solution:** Pass a portion of the solution under test having a concentration similar to that of the *Standard solution* through a suitable filter of 0.45- μ m pore size.**Table 1**

Tablet Label Claim (mg)	Final Concentration (mg/mL)
250	0.27
500	0.55
750	0.83

Instrumental conditions(See [Ultraviolet-Visible Spectroscopy \(857\)](#).)**Mode:** UV**Analytical wavelength:** 293 nm**Cell length:** 0.1 mm**Blank:** *Medium***Analysis****Samples:** *Standard solution* and *Sample solution*Calculate the percentage (*Q*) of the labeled amount of levofloxacin ($C_{18}H_{20}FN_3O_4$) dissolved:

$$\text{Result} = (A_U/A_S) \times C_S \times V \times D \times (1/L) \times 100$$

A_u = absorbance of the *Sample solution* A_s = absorbance of the *Standard solution* C_s = concentration of the *Standard solution* (mg/mL) V = volume of *Medium*, 900 mL D = dilution factor of the *Sample solution* L = label claim (mg/Tablet)**Tolerances:** NLT 80% (Q) of the labeled amount of levofloxacin ($C_{18}H_{20}FN_3O_4$) is dissolved.**Test 3****Medium:** 0.1 N [hydrochloric acid](#); 900 mL**Apparatus 1:** 100 rpm**Time:** 30 min**Standard solution:** $L/900$ mg/mL of [USP Levofloxacin RS](#) in *Medium*. Mix to obtain solutions with known concentrations as indicated in [Table 1](#), where L is the label claim in mg/Tablet.**Sample solution:** Pass a portion of the solution under test having the same concentration as that of the *Standard solution* through a suitable filter of 0.45- μ m pore size.**Instrumental conditions**(See [Ultraviolet-Visible Spectroscopy \(857\)](#).)**Mode:** UV**Analytical wavelength:** 326 nm**Cell length:** 1 mm for a 250-mg Tablet, 0.5 mm for a 500-mg Tablet, and 0.2 mm for a 750-mg Tablet**Blank:** *Medium***Analysis****Samples:** *Standard solution* and *Sample solution*Calculate the percentage (Q) of the labeled amount of levofloxacin ($C_{18}H_{20}FN_3O_4$) dissolved:

$$\text{Result} = (A_u/A_s) \times C_s \times V \times D \times (1/L) \times 100$$

 A_u = absorbance of the *Sample solution* A_s = absorbance of the *Standard solution* C_s = concentration of the *Standard solution* (mg/mL) V = volume of *Medium*, 900 mL D = dilution factor of the *Sample solution* L = label claim (mg/Tablet)**Tolerances:** NLT 80% (Q) of the labeled amount of levofloxacin ($C_{18}H_{20}FN_3O_4$) is dissolved.**Test 4****Medium:** 0.1 N [hydrochloric acid](#); 900 mL**Apparatus 1:** 100 rpm**Time:** 30 min**Standard solution:** 16 μ g/mL of [USP Levofloxacin RS](#) in *Medium***Sample solution:** Pass a portion of the solution under test having the same concentration as that of the *Standard solution* through a suitable filter of 0.45- μ m pore size.**Instrumental conditions**(See [Ultraviolet-Visible Spectroscopy \(857\)](#).)**Mode:** UV**Analytical wavelength:** 332 nm**Cell length:** 1 cm**Blank:** *Medium***Analysis****Samples:** *Standard solution* and *Sample solution*Calculate the percentage (Q) of the labeled amount of levofloxacin ($C_{18}H_{20}FN_3O_4$) dissolved:

$$\text{Result} = (A_u/A_s) \times C_s \times V \times D \times (1/L) \times 100$$

 A_u = absorbance of the *Sample solution*

A_s = absorbance of the *Standard solution* C_s = concentration of the *Standard solution* (mg/mL) V = volume of *Medium*, 900 mL D = dilution factor of the *Sample solution* L = label claim (mg/Tablet)**Tolerances:** NLT 80% (Q) of the labeled amount of levofloxacin ($C_{18}H_{20}FN_3O_4$) is dissolved.

- **UNIFORMITY OF DOSAGE UNITS (905):** Meet the requirements

IMPURITIES

Change to read:

- **ORGANIC IMPURITIES**

Diluent, Mobile phase, Standard stock solution, Sample solution, and Chromatographic system: Proceed as directed in the Assay.

▲Standard solution A: 0.2 mg/mL of [USP Levofloxacin RS](#) in *Mobile phase* from the *Standard stock solution*

Standard solution B: 0.001 mg/mL of [USP Levofloxacin Related Compound A RS](#) in *Mobile phase*▲ (USP 1-May-2021)

System suitability

Sample: ▲*Standard solution A*▲ (USP 1-May-2021)

Suitability requirements

Tailing factor: NMT 1.8 ▲ (USP 1-May-2021)

Relative standard deviation: NMT 2.0% ▲ (USP 1-May-2021)

Analysis

Samples: *Sample solution*, ▲*Standard solution A*, and *Standard solution B*▲ (USP 1-May-2021)

Calculate the percentage of levofloxacin related compound A in the portion of Tablets taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_u = peak response of levofloxacin related compound A from the *Sample solution*

r_s = peak response of levofloxacin related compound A from ▲*Standard solution B*▲ (USP 1-May-2021)

C_s = concentration of [USP Levofloxacin Related Compound A RS](#) in ▲*Standard solution B*▲ (USP 1-May-2021) (mg/mL)

C_u = nominal concentration of levofloxacin in the *Sample solution* (mg/mL)

Calculate the percentage of any other impurities in the portion of Tablets taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times (1/F) \times 100$$

r_u = peak response of any impurity from the *Sample solution*

r_s = peak response of levofloxacin from ▲*Standard solution A*▲ (USP 1-May-2021)

C_s = concentration of [USP Levofloxacin RS](#) in ▲*Standard solution A*▲ (USP 1-May-2021) (mg/mL)

C_u = nominal concentration of levofloxacin in the *Sample solution* (mg/mL)

F = relative response factor (see [Table 2](#))

Acceptance criteria: See [Table 2](#).

Table 2

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Decarboxy levofloxacin ^a	0.38	0.60	0.3
Levofloxacin related compound A ^b	0.47	—	0.7

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Diamine derivative ^c	0.52	0.83	0.3
Levofloxacin N-oxide ^d	0.63	▲1.0▲ (USP 1-May-2021)	0.7
9-Desfluoro levofloxacin ^{e,f}	0.73	—	—
Levofloxacin	1.00	—	—
Dextrofloxacin ▲(D-isomer)▲ (USP 1-May-2021) ^{g,f}	1.23	—	—
Levofloxacin 9-piperazino isomer ^{h,f}	1.69	—	—
Any unspecified impurity	—	1.0	0.2
Total impurities	—	—	1

^a (S)-9-Fluoro-2,3-dihydro-3-methyl-10-(4-methyl-1-piperazinyl)-7-oxo-7*H*-pyrido[1,2,3-de][1,4]benzoxazine.

^b (S)-9-Fluoro-3-methyl-10-(piperazin-1-yl)-7-oxo-2,3-dihydro-7*H*-pyrido[1,2,3-de][1,4]benzoxazine-6-carboxylic acid.

^c (S)-9-Fluoro-2,3-dihydro-3-methyl-10-[2-(methylamino)ethylamino]-7-oxo-7*H*-pyrido[1,2,3-de][1,4]benzoxazine-6-carboxylic acid.

^d (S)-4-(6-Carboxy-9-fluoro-2,3-dihydro-3-methyl-7-oxo-7*H*-pyrido-[1,2,3-de][1,4]benzoxazine-10-yl)-1-methylpiperazine 1-oxide.

^e (S)-2,3-Dihydro-3-methyl-10-(4-methyl-1-piperazinyl)-7-oxo-7*H*-pyrido[1,2,3-de][1,4]benzoxazine-6-carboxylic acid.

^f Process impurity, for information only.

^g (R)-9-Fluoro-2,3-dihydro-3-methyl-10-(4-methyl-1-piperazinyl)-7-oxo-7*H*-pyrido[1,2,3-de][1,4]benzoxazine-6-carboxylic acid.

^h (S)-10-fluoro-3-methyl-9-(4-methylpiperazin-1-yl)-7-oxo-3,7-dihydro-7*H*-pyrido[1,2,3-de][1,4]benzoxazine-6-carboxylic acid.

ADDITIONAL REQUIREMENTS

- PACKAGING AND STORAGE:** Preserve in tight containers. Store at controlled room temperature.
- LABELING:** When more than one *Dissolution* test is given, the labeling states the *Dissolution* test used only if *Test 1* is not used.

- USP REFERENCE STANDARDS (11).**

[USP Levofloxacin RS](#)

[USP Levofloxacin Related Compound A RS](#)

(S)-9-Fluoro-3-methyl-10-(piperazin-1-yl)-7-oxo-2,3-dihydro-7*H*-pyrido[1,2,3-de][1,4]benzoxazine-6-carboxylic acid.

C17H18FN3O4 347.34

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
LEVOFLOXACIN TABLETS	Documentary Standards Support	SM12020 Small Molecules 1

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 44(5)

Current DocID: [GUID-F5B612F7-5E5F-429B-A8F3-119775C6D2EF_2_en-US](#)

DOI: https://doi.org/10.31003/USPNF_M44775_02_01

DOI ref: [3a37u](#)