

Status: Currently Official on 15-Feb-2025
Official Date: Official as of 01-Jan-2020
Document Type: USP Monographs
DocId: GUID-5244A22A-9798-433E-B0F4-72A83E2ADA57_6_en-US
DOI: https://doi.org/10.31003/USPNF_M3890_06_01
DOI Ref: 93p7k

© 2025 USPC
Do not distribute

Levetiracetam Extended-Release Tablets

DEFINITION

Levetiracetam Extended-Release Tablets contain NLT 90.0% and NMT 110.0% of the labeled amount of levetiracetam ($C_8H_{14}N_2O_2$).

IDENTIFICATION

- **A.** The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.

ASSAY

• PROCEDURE

Buffer: 1.4 g/L of [anhydrous dibasic sodium phosphate](#) in [water](#). Adjust with [phosphoric acid](#) to a pH of 3.5.

Mobile phase: [Acetonitrile](#) and [Buffer](#) (10:90)

Standard stock solution: 1.0 mg/mL of [USP Levetiracetam RS](#) prepared as follows. Weigh a suitable quantity of the Reference Standard into a volumetric flask. Add *Mobile phase* to fill 60% of flask volume and [tetrahydrofuran](#) to fill 4% of flask volume. Sonicate in cool water to dissolve. Equilibrate to room temperature. Dilute with *Mobile phase* to volume.

Standard solution: 0.08 mg/mL of [USP Levetiracetam RS](#) in *Mobile phase* from *Standard stock solution*. Pass a portion of the solution through a suitable filter of 0.45- μ m pore size.

Sample stock solution: Nominally ($L/100$) mg/mL of levetiracetam from NLT 5 Tablets prepared as follows, where L is the label claim in mg/Tablet. Transfer the Tablets to a volumetric flask containing [tetrahydrofuran](#) to fill about 5% of flask volume. Stir for 30 min, and allow to stand for 5 min. Sonicate for 20 min with intermittent shaking. Add *Mobile phase* to fill 80% of final volume, and sonicate in cold water for 20 min with intermittent shaking. Add [methanol](#) to fill 10% of flask volume. Dilute with *Mobile phase* to volume. Centrifuge for 15 min, and pass a portion of the solution through a suitable filter of 0.2- μ m pore size.

Alternatively, the *Sample stock solution*, having a nominal concentration of 3 mg/mL of levetiracetam, may be prepared as follows. Finely grind NLT 10 Tablets, and transfer an amount equivalent to 750 mg of levetiracetam to a suitable volumetric flask. Add 18% of the flask volume of [acetonitrile](#). Sonicate for 10 min followed by shaking using a mechanical shaker for 10 min. Add 18% of the flask volume of [water](#), and shake for 15 min using a mechanical shaker. Allow the sample to equilibrate to room temperature, and dilute with a mixture of [acetonitrile](#) and [water](#) (50:50) to volume. Pass a portion of the solution through a suitable filter of 0.45- μ m pore size.

Sample solution: Nominally 0.08 mg/mL of levetiracetam in *Mobile phase* from *Sample stock solution*

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 205 nm

Column: 4.6-mm \times 25-cm; 5- μ m packing [L7](#)

Temperatures

Column: 30°

Autosampler: 10°

Flow rate: 1.5 mL/min

Injection volume: 10 μ L

Run time: 3 times the retention time of levetiracetam

System suitability

Sample: *Standard solution*

Suitability requirements

Tailing factor: NMT 2.0

Relative standard deviation: NMT 2.0%

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of the labeled amount of levetiracetam ($C_8H_{14}N_2O_2$) in the portion of Tablets taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_u = peak response of levetiracetam from the *Sample solution*

r_s = peak response of levetiracetam from the *Standard solution*

C_s = concentration of [USP Levetiracetam RS](#) in the *Standard solution* (mg/mL)

C_u = nominal concentration of levetiracetam in the *Sample solution* (mg/mL)

Acceptance criteria: 90.0%–110.0%

PERFORMANCE TESTS

Change to read:

- [Dissolution \(711\)](#)

Test 1

Buffer A: Dissolve 6.8 g of [potassium dihydrogen phosphate](#) and 0.2 g of [sodium hydroxide](#) in 1 L of [water](#). If necessary, adjust with [1 N sodium hydroxide](#) to a pH of 6.0.

Medium: *Buffer A*; 900 mL

Apparatus 1: 100 rpm

Times: 1, 2, 4, and 8 h

Buffer B: 1.4 g/L of [anhydrous dibasic sodium phosphate](#) in [water](#). Adjust with [phosphoric acid](#) to a pH of 3.5.

Mobile phase: [Acetonitrile](#) and *Buffer B* (10:90)

Standard stock solution: 1.7 mg/mL of [USP Levetiracetam RS](#) in [water](#). Sonication may be used to aid in dissolution.

Standard solution: ($L/900$) mg/mL of [USP Levetiracetam RS](#) in *Medium* from *Standard stock solution*, where L is the label claim in mg/Tablet. Pass a portion through a suitable filter of 0.45- μ m pore size.

Sample solution: Pass a portion of the solution under test through a suitable filter of 0.45- μ m pore size.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 205 nm

Column: 4.6-mm \times 25-cm; 5- μ m packing [L7](#)

Temperatures

Column: 30°

Autosampler: 10°

Flow rate: 1.5 mL/min

Injection volume: 5 μ L

Run time: 2 times the retention time of levetiracetam

System suitability

Sample: *Standard solution*

Suitability requirements

Tailing factor: NMT 2.0

Relative standard deviation: NMT 2.0%

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the concentration, C_i , of levetiracetam ($C_8H_{14}N_2O_2$) in *Medium* (mg/mL) after time point i :

$$\text{Result}_i = (r_u/r_s) \times C_s$$

r_u = peak response from the *Sample solution*

r_s = peak response from the *Standard solution*

C_s = concentration of the *Standard solution* (mg/mL)

Calculate the percentage of the labeled amount of levetiracetam ($C_8H_{14}N_2O_2$) dissolved at each time point (i):

$$\text{Result}_1 = C_1 \times V \times (1/L) \times 100$$

$$\text{Result}_2 = [(C_2 \times V) + (C_1 \times V_s)] \times (1/L) \times 100$$

$$\text{Result}_3 = \{(C_3 \times V) + [(C_2 + C_1) \times V_s]\} \times (1/L) \times 100$$

$$\text{Result}_4 = \{(C_4 \times V) + [(C_3 + C_2 + C_1) \times V_s]\} \times (1/L) \times 100$$

C_i = concentration of levetiracetam in the portion of sample withdrawn at the specified time point (mg/mL)

V = volume of *Medium*, 900 mL

L = label claim (mg/Tablet)

V_s = volume of the *Sample solution* withdrawn at each time point and replaced with *Medium* (mL)

Tolerances: See [Table 1](#).

Table 1

Time Point (<i>i</i>)	Time (h)	Amount Dissolved	
		500 mg/Tablet (%)	750 mg/Tablet (%)
1	1	25–45	33–53
2	2	45–65	45–65
3	4	60–80	65–85
4	8	NLT 80	NLT 80

The percentages of the labeled amount of levetiracetam ($C_8H_{14}N_2O_2$), dissolved at the times specified, conform to [Dissolution \(711\)](#).

Acceptance Table 2.

Test 2: If the product complies with this procedure, the labeling indicates that it meets USP *Dissolution Test 2*.

Buffer A: Dissolve 6.8 g of [potassium dihydrogen phosphate](#) and 0.2 g of [sodium hydroxide](#) in 1 L of [water](#). If necessary, adjust with [1 N sodium hydroxide](#) to a pH of 6.0.

Medium: Buffer A; 900 mL

Apparatus 1: 100 rpm

Times: 1, 2, 4, and 8 h

Buffer B: 2.82 g/L of [potassium dihydrogen phosphate](#) in [water](#)

Mobile phase: [Acetonitrile](#) and *Buffer B* (5:95). Adjust with [phosphoric acid](#) to a pH of 2.0.

Standard solution: (*L*/900) mg/mL of [USP Levetiracetam RS](#) in *Medium*, where *L* is the label claim in mg/Tablet

Sample solution: Pass a portion of the solution under test through a suitable filter of 0.45- μ m pore size.

Chromatographic system

(See [Chromatography \(621\)](#), *System Suitability*.)

Mode: LC

Detector: UV 235 nm

Columns

Guard: 4.6-mm \times 1-cm, 4.6-mm \times 2-cm, or 4.0-mm \times 2-cm; 5- μ m packing [L1](#)

Analytical: 4.6-mm \times 5-cm; 5- μ m packing [L1](#)

Flow rate: 0.8 mL/min

Injection volume: 10 μ L

Run time: 2 times the retention time of levetiracetam

System suitability

Sample: Standard solution

Suitability requirements

Tailing factor: NMT 2.0

Relative standard deviation: NMT 1.5% for five replicate injections

Analysis

Samples: Standard solution and Sample solution

Calculate the concentration, C_p , of levetiracetam ($C_8H_{14}N_2O_2$) in *Medium* (mg/mL) after time point *i*:

$$\text{Result}_i = (r_U/r_S) \times C_S$$

r_U = peak response from the *Sample solution*

r_S = peak response from the *Standard solution*

C_S = concentration of the *Standard solution* (mg/mL)

Calculate the percentage of the labeled amount of levetiracetam ($C_8H_{14}N_2O_2$) dissolved at each time point (*i*):

$$\text{Result}_i = C_i \times V \times (1/L) \times 100$$

$$\text{Result}_2 = \{[C_2 \times (V - V_S)] + (C_1 \times V_S)\} \times (1/L) \times 100$$

$$\text{Result}_3 = ((C_3 \times [V - (2 \times V_S)]) + [(C_2 + C_1) \times V_S]) \times (1/L) \times 100$$

$$\text{Result}_4 = ((C_4 \times [V - (3 \times V_S)]) + [(C_3 + C_2 + C_1) \times V_S]) \times (1/L) \times 100$$

C_i = concentration of levetiracetam in *Medium* in the portion of sample withdrawn at time point i (mg/mL)

V = volume of *Medium*, 900 mL

L = label claim (mg/Tablet)

V_S = volume of the *Sample solution* withdrawn from the *Medium* (mL)

Tolerances: See [Table 2](#).

Table 2

Time Point (i)	Time (h)	Amount Dissolved	
		500 mg/Tablet (%)	750 mg/Tablet (%)
1	1	22–42	16–36
2	2	39–59	30–50
3	4	62–82	50–70
4	8	NLT 80	NLT 80

The percentages of the labeled amount of levetiracetam ($C_8H_{14}N_2O_2$), dissolved at the times specified, conform to [Dissolution \(711\)](#),

[Acceptance Table 2](#).

Test 3: If the product complies with this procedure, the labeling indicates that it meets USP *Dissolution Test 3*.

Buffer A: Dissolve 6.8 g of [potassium dihydrogen phosphate](#) and 0.5 g of [sodium hydroxide](#) in 1 L of [water](#). Adjust to a pH of 6.0.

Medium: Buffer A; 900 mL

Apparatus 1: 100 rpm

Times: 1, 2, 4, and 8 h

Buffer B: 7.8 g/L of [monobasic sodium phosphate dihydrate](#) in [water](#). Adjust with [sodium hydroxide](#) to a pH of 5.6.

Mobile phase: [Acetonitrile](#) and *Buffer B* (15:85)

Standard solution: ($L/900$) mg/mL of [USP Levetiracetam RS](#) in *Medium*, where L is the label claim in mg/Tablet

Sample solution: Centrifuge a portion of the solution under test.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 220 nm

Column: 4.6-mm \times 15-cm; 5- μ m packing [L1](#)

Column temperature: 30°

Flow rate: 1.5 mL/min

Injection volume: 10 μ L

Run time: 2 times the retention time of levetiracetam

System suitability

Sample: *Standard solution*

Suitability requirements

Column efficiency: NLT 1500 theoretical plates

Relative standard deviation: NMT 2.0% for six replicate injections

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the concentration, C_i , of levetiracetam ($C_8H_{14}N_2O_2$) in *Medium* (mg/mL) after time point i :

$$\text{Result}_i = (r_U/r_S) \times C_S$$

r_U = peak response from the *Sample solution*

r_S = peak response from the *Standard solution*

C_S = concentration of [USP Levetiracetam RS](#) in the *Standard solution* (mg/mL)

Calculate the percentage of the labeled amount of levetiracetam ($C_8H_{14}N_2O_2$) dissolved at each time point (i):

$$\text{Result}_1 = C_1 \times V \times (1/L) \times 100$$

$$\text{Result}_2 = \{[C_2 \times (V - V_s)] + (C_1 \times V_s)\} \times (1/L) \times 100$$

$$\text{Result}_3 = \{(C_3 \times [V - (2 \times V_s)]) + [(C_2 + C_1) \times V_s]\} \times (1/L) \times 100$$

$$\text{Result}_4 = \{(C_4 \times [V - (3 \times V_s)]) + [(C_3 + C_2 + C_1) \times V_s]\} \times (1/L) \times 100$$

C_i = concentration of levetiracetam in *Medium* in the portion of sample withdrawn at time point i (mg/mL)

V = volume of *Medium*, 900 mL

L = label claim (mg/Tablet)

V_s = volume of the *Sample solution* withdrawn from the *Medium* (mL)

Tolerances: See [Table 3](#).

Table 3

Time Point (i)	Time (h)	Amount Dissolved		
		500 mg/Tablet (%)	750 mg/Tablet (%)	1000 mg/Tablet (%)
1	1	42–62	35–55	35–55
2	2	59–79	50–70	50–70
3	4	78–98	70–90	70–90
4	8	NLT 80	NLT 80	NLT 80

The percentages of the labeled amount of levetiracetam ($C_8H_{14}N_2O_2$), dissolved at the times specified, conform to [Dissolution \(711\)](#),

[Acceptance Table 2](#).

Test 4: If the product complies with this procedure, the labeling indicates that it meets USP *Dissolution Test 4*.

Buffer: 6.8 g/L of [monobasic potassium phosphate](#) in [water](#). Adjust with [sodium hydroxide](#) to a pH of 6.0.

Medium: *Buffer*, 900 mL

Apparatus 1: 100 rpm

Times: 1, 2, 4, and 8 h

Standard solution: ($L/900$) mg/mL of [USP Levetiracetam RS](#) in *Medium*, where L is the label claim in mg/Tablet

Sample solution: Pass a suitable portion of the solution under test through a suitable filter of 0.45- μ m pore size. Discard the first 3 mL of the filtrate. Dilute a known volume of the remaining filtrate quantitatively with *Medium*.

Blank: *Medium*

Instrumental conditions

Mode: UV

Analytical wavelength: 210 nm

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the concentration, C_i , of levetiracetam ($C_8H_{14}N_2O_2$) in *Medium* (mg/mL) after time point i :

$$\text{Result}_i = (A_u/A_s) \times C_s$$

A_u = absorbance of the *Sample solution*

A_s = absorbance of the *Standard solution*

C_s = concentration of the *Standard solution* (mg/mL)

Calculate the percentage of the labeled amount of levetiracetam ($C_8H_{14}N_2O_2$) dissolved at each time point (i):

$$\text{Result}_1 = C_1 \times V \times (1/L) \times 100$$

$$\text{Result}_2 = [(C_2 \times V) + (C_1 \times V_s)] \times (1/L) \times 100$$

$$\text{Result}_3 = \{(C_3 \times V) + [(C_2 + C_1) \times V_S]\} \times (1/L) \times 100$$

$$\text{Result}_4 = \{(C_4 \times V) + [(C_3 + C_2 + C_1) \times V_S]\} \times (1/L) \times 100$$

C_i = concentration of levetiracetam in the portion of sample withdrawn at the specified time point (mg/mL)

V = volume of *Medium*, 900 mL

L = label claim (mg/Tablet)

V_S = volume of the *Sample solution* withdrawn at each time point and replaced with *Medium* (mL)

Tolerances: See [Table 4](#).

Table 4

Time Point (i)	Time (h)	Amount Dissolved	
		500 mg/Tablet (%)	750 mg/Tablet (%)
1	1	22–42	16–36
2	2	39–59	30–50
3	4	62–82	50–70
4	8	NLT 80	NLT 80

The percentages of the labeled amount of levetiracetam ($C_8H_{14}N_2O_2$), dissolved at the times specified, conform to [Dissolution \(711\)](#),

[Acceptance Table 2](#).

Test 5: If the product complies with this procedure, the labeling indicates that it meets USP *Dissolution Test 5*.

Medium: pH 6.0 phosphate buffer (6.8 g/L of [monobasic potassium phosphate](#) in [water](#). Adjust with [sodium hydroxide](#) to a pH of 6.0.); 900 mL

Apparatus 1: 100 rpm

Times

For 500- and 750-mg Tablets: 1, 4, 8, and 12 h

For 1000-mg Tablets: 1, 2, 4, and 8 h

Buffer: 2.7 g/L of [monobasic potassium phosphate](#) in [water](#)

Mobile phase: [Acetonitrile](#) and **Buffer** (10:90)

Standard stock solution: 2.8 mg/mL of [USP Levetiracetam RS](#) in *Medium* prepared as follows. Transfer a suitable quantity of [USP Levetiracetam RS](#) to a suitable volumetric flask. Dissolve in 20% of the flask volume of [methanol](#). Dilute with *Medium* to volume.

Standard solution: ($L/900$) mg/mL of [USP Levetiracetam RS](#) in *Medium* from **Standard stock solution**, where L is the label claim in mg/Tablet

Sample solution: At each time point withdraw 1 mL of the solution under test, and pass it through a suitable filter of 0.45- μ m pore size.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 220 nm

Column: 4.6-mm \times 15-cm; 5- μ m packing [L11](#)

Flow rate: 1 mL/min

Injection volume

For 500- and 750-mg Tablets: 10 μ L

For 1000-mg Tablets: 5 μ L

Run time: 2 times the retention time of levetiracetam

System suitability

Sample: *Standard solution*

Suitability requirements

Column efficiency: NLT 4000 theoretical plates

Tailing factor: NMT 1.5

Relative standard deviation: NMT 2.0% for five replicate injections

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of the labeled amount of levetiracetam ($C_8H_{14}N_2O_2$) dissolved in *Medium* (mg/mL) after time point i :

$$\text{Result}_i = (r_U/r_S) \times C_S \times V \times (1/L) \times 100$$

r_U = peak response from the *Sample solution*

r_S = peak response from the *Standard solution*

C_S = concentration of [USP Levetiracetam RS](#) in the *Standard solution* (mg/mL)

V = volume of *Medium*, 900 mL

L = label claim (mg/Tablet)

Tolerances: See [Table 5](#).

Table 5

Time Point (i)	Time for 500 and 750 mg/Tablet (h)	Time for 1000 mg/Tablet (h)	Amount Dissolved	
			500 and 750 mg/Tablet (%)	1000 mg/Tablet (%)
1	1	1	NMT 40	20–40
2	4	2	55–80	35–55
3	8	4	NLT 75	55–75
4	12	8	NLT 85	NLT 80

The percentages of the labeled amount of levetiracetam ($C_8H_{14}N_2O_2$), dissolved at the times specified, conform to [Dissolution \(711\)](#).

Acceptance Table 2.

Test 6: If the product complies with this procedure, the labeling indicates that it meets USP *Dissolution Test 6*.

Medium: pH 6.0 phosphate buffer (6.9 g of [monobasic potassium phosphate](#), and 0.23 g of [sodium hydroxide](#) in 1 L of [water](#). Adjust with [sodium hydroxide](#) or [phosphoric acid](#) to a pH of 6.0.); 900 mL

Apparatus 1: 100 rpm

Times: 1, 2, 4, and 8 h

Mobile phase: [Acetonitrile](#) and [water](#) (10:90)

Standard solution: 0.5 mg/mL of [USP Levetiracetam RS](#) in *Medium* prepared as follows. Transfer a suitable quantity of [USP Levetiracetam RS](#) to a suitable volumetric flask. Add 4% of the flask volume of [methanol](#) and 60% of the flask volume of the *Medium*. Sonicate for NLT 5 min. Dilute with *Medium* to volume.

Sample solution: At the end of specified time interval, withdraw a known volume of the solution from the dissolution vessel. Pass a suitable portion of the solution under test through a suitable filter of 0.45- μ m pore size.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 230 nm

Column: 4.6-mm \times 5-cm; 5- μ m packing [L1](#)

Column temperature: 30°

Flow rate: 0.9 mL/min

Injection volume: 10 μ L

Run time: 2 times the retention time of levetiracetam

System suitability

Sample: *Standard solution*

Suitability requirements

Tailing factor: NMT 2.0

Relative standard deviation: NMT 2.0%

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the concentration, C_i , of levetiracetam ($C_8H_{14}N_2O_2$) in *Medium* (mg/mL) after time point i :

$$\text{Result}_i = (r_U/r_S) \times C_S$$

r_U = peak response from the *Sample solution*

r_S = peak response from the *Standard solution*

C_s = concentration of the *Standard solution* (mg/mL)

Calculate the percentage of the labeled amount of levetiracetam ($C_8H_{14}N_2O_2$) dissolved at each time point (i):

$$\text{Result}_1 = C_1 \times V \times (1/L) \times 100$$

$$\text{Result}_2 = \{[C_2 \times (V - V_s)] + (C_1 \times V_s)\} \times (1/L) \times 100$$

$$\text{Result}_3 = \{[C_3 \times [V - (2 \times V_s)]] + [(C_2 + C_1) \times V_s]\} \times (1/L) \times 100$$

$$\text{Result}_4 = \{[C_4 \times [V - (3 \times V_s)]] + [(C_3 + C_2 + C_1) \times V_s]\} \times (1/L) \times 100$$

C_i = concentration of levetiracetam in *Medium* in the portion of sample withdrawn at time point i (mg/mL)

V = volume of *Medium*, 900 mL

L = label claim (mg/Tablet)

V_s = volume of the *Sample solution* withdrawn from the solution under test (mL)

Tolerances: See [Table 6](#).

Table 6

Time Point (i)	Time (h)	Amount Dissolved (%)
1	1	25–45
2	2	45–65
3	4	60–80
4	8	NLT 80

The percentages of the labeled amount of levetiracetam ($C_8H_{14}N_2O_2$), dissolved at the times specified, conform to [Dissolution \(711\)](#),

[Acceptance Table 2](#).

Test 7: If the product complies with this procedure, the labeling indicates that it meets USP *Dissolution Test 7*.

Medium: Acetate buffer, pH 4.5, prepared as follows. Dissolve 3.0 g of [sodium acetate](#) in 1 L of [water](#) and add 1.4 mL of [glacial acetic acid](#). Adjust with [5 N sodium hydroxide](#) or [glacial acetic acid](#) to a pH of 4.5; 230 mL.

Apparatus 3: 15 dips per min, with suitable screens

Times

For 500-mg Tablets: 1, 2, 4, and 8 h

For 750-mg Tablets: 1, 2, 4, and 10 h

▲For 1000- and 1500-mg Tablets: 1, 4, and 12 h ▲ (RB 1-Jan-2020)

Buffer: 13.6 g/L of [monobasic potassium phosphate](#) in [water](#). Adjust with [5 N sodium hydroxide](#) to a pH of 6.0.

Mobile phase: [Methanol](#) and **Buffer** (15:85)

Standard solution: 0.55 mg/mL of [USP Levetiracetam RS](#) in *Medium*. Sonication may be used to aid in dissolution.

Sample solution: Pass a suitable portion of the solution under test through a suitable filter of 0.45- μ m pore size. Discard the first 5 mL.

Dilute a suitable volume of the filtrate with *Medium*, as needed.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 210 nm

Column: 4.6-mm \times 10-cm; 3- μ m packing [L1](#)

Column temperature: 30°

Flow rate: 1 mL/min

Injection volume: 10 μ L

Run time: 2 times the retention time of levetiracetam

System suitability

Sample: *Standard solution*

Suitability requirements

Tailing factor: NMT 2.0

Relative standard deviation: NMT 2.0%

Analysis

Samples: Standard solution and Sample solutionCalculate the concentration, C_i , of levetiracetam ($C_8H_{14}N_2O_2$) in Medium (mg/mL) after time point i :

$$\text{Result}_i = (r_U/r_S) \times D \times C_S$$

 r_U = peak response from the Sample solution r_S = peak response from the Standard solution D = dilution factor, as needed C_S = concentration of the Standard solution (mg/mL)Calculate the percentage of the labeled amount of levetiracetam ($C_8H_{14}N_2O_2$) dissolved at each time point (i):

$$\text{Result}_1 = C_i \times V \times (1/L) \times 100$$

$$\text{Result}_2 = C_2 \times V \times (1/L) \times 100 + \text{Result}_1$$

$$\text{Result}_3 = C_3 \times V \times (1/L) \times 100 + \text{Result}_2$$

$$\text{Result}_4 = C_4 \times V \times (1/L) \times 100 + \text{Result}_3$$

 C_i = concentration of levetiracetam in the portion of sample withdrawn at the specified time point (mg/mL) V = volume of Medium, 230 mL L = label claim (mg/Tablet)**Tolerances:** See [Table 7](#)▲ and [Table 8](#).▲ (RB 1-Jan-2020)**Table 7**

Time Point (i)	Time (h)	Amount Dissolved	
		500 mg/Tablet (%)	750 mg/Tablet (%)
1	1	15–35	10–30
2	2	30–50	25–45
3	4	50–75	45–70
	8	NLT 80	—
4	10	—	NLT 80

▲Table 8

Time Point (i)	Time (h)	Amount Dissolved	
		1000 mg/Tablet (%)	1500 mg/Tablet (%)
1	1	15–35	15–35
2	4	45–65	40–60
3	12	NLT 80	NLT 80▲ (RB 1-Jan-2020)

The percentages of the labeled amount of levetiracetam ($C_8H_{14}N_2O_2$), dissolved at the times specified, conform to [Dissolution \(711\)](#).[Acceptance Table 2](#).**Test 8:** If the product complies with this procedure, the labeling indicates that it meets USP *Dissolution Test 8*.**Medium:** Phosphate buffer, pH 6.0, prepared as follows. Dissolve 6.8 g of [monobasic potassium phosphate](#) in 1 L of [water](#). Adjust with [10 N sodium hydroxide solution](#) to a pH of 6.0; 900 mL.

Apparatus 1: 100 rpm**Times:** 1, 2, 4, and 12 h**Buffer:** 0.26 g/L of monobasic potassium phosphate in water. Adjust with 20 g/L aqueous potassium hydroxide to a pH of 5.5.**Solution A:** Acetonitrile and **Buffer** (5:95)**Mobile phase:** Acetonitrile and **Solution A** (10:90)**Standard solution:** ($L/900$) mg/mL of USP Levetiracetam RS in Medium, where L is the label claim in mg/Tablet. Sonicate to dissolve as needed.**Sample solution:** Pass a portion of the solution under test through a suitable filter of 0.45- μ m pore size.**Chromatographic system**(See Chromatography (621), System Suitability.)**Mode:** LC**Detector:** UV 220 nm**Column:** 4.6-mm \times 15-cm; 5- μ m packing L1**Column temperature:** 20°**Flow rate:** 1 mL/min**Injection volume:** 5 μ L**Run time:** NLT 1.6 times the retention time of levetiracetam**System suitability****Sample:** *Standard solution***Suitability requirements****Tailing factor:** NMT 1.5**Relative standard deviation:** NMT 1.8%**Analysis****Samples:** *Standard solution* and *Sample solution*Calculate the concentration, C_i , of levetiracetam ($C_8H_{14}N_2O_2$) in Medium (mg/mL) after time point i :

$$\text{Result}_i = (r_U/r_S) \times C_S$$

 r_U = peak response from the *Sample solution* r_S = peak response from the *Standard solution* C_S = concentration of the *Standard solution* (mg/mL)Calculate the percentage of the labeled amount of levetiracetam ($C_8H_{14}N_2O_2$) dissolved at each time point (i):

$$\text{Result}_1 = C_1 \times V \times (1/L) \times 100$$

$$\text{Result}_2 = \{[C_2 \times (V - V_S)] + (C_1 \times V_S)\} \times (1/L) \times 100$$

$$\text{Result}_3 = \{[C_3 \times [V - (2 \times V_S)]] + [(C_2 + C_1) \times V_S]\} \times (1/L) \times 100$$

$$\text{Result}_4 = \{[C_4 \times [V - (3 \times V_S)]] + [(C_3 + C_2 + C_1) \times V_S]\} \times (1/L) \times 100$$

 C_i = concentration of levetiracetam in the portion of sample withdrawn at time point i (mg/mL) V = volume of Medium, 900 mL L = label claim (mg/Tablet) V_S = volume of the *Sample solution* withdrawn from the Medium (mL)**Tolerances:** See ▲ Table 9.**Table 9** ▲ (RB 1-Jan-2020)

Time Point (i)	Time (h)	Amount Dissolved (%)
1	1	25–45
2	2	40–60
3	4	55–75

Time Point (i)	Time (h)	Amount Dissolved (%)
4	12	NLT 80

The percentages of the labeled amount of levetiracetam ($C_8H_{14}N_2O_2$), dissolved at the times specified, conform to [Dissolution \(711\)](#).

Acceptance Table 2.

Test 9: If the product complies with this procedure, the labeling indicates that it meets USP *Dissolution Test 9*.

Medium: Phosphate buffer, pH 6.0, prepared as follows. Dissolve 6.8 g of [monobasic potassium phosphate](#) in 1 L of [water](#). Adjust with 50% (w/v) [potassium hydroxide](#) solution to a pH of 6.0; 900 mL.

Apparatus 1: 100 rpm

Times: 1, 2, 4, and 12 h

Buffer: 5.0 g/L of [monobasic potassium phosphate](#) in [water](#)

Mobile phase: [Acetonitrile](#) and **Buffer** (15:85)

Standard solution: 0.56 mg/mL of [USP Levetiracetam RS](#) in *Medium*. Sonicate to dissolve as necessary.

Sample solution: Centrifuge a portion of the solution under test and use the clear supernatant. [NOTE—The use of a centrifuge speed of 2500 rpm for 10 min may be suitable.]

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 220 nm

Column: 4.6-mm \times 15-cm; 5- μ m packing [L7](#)

Flow rate: 1.5 mL/min

Injection volume: 5 μ L

Run time: NLT 2 times the retention time of levetiracetam

System suitability

Sample: *Standard solution*

Suitability requirements

Tailing factor: NMT 2.0

Relative standard deviation: NMT 2.0%

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the concentration, C_i , of levetiracetam ($C_8H_{14}N_2O_2$) in *Medium* (mg/mL) after time point i :

$$\text{Result}_i = (r_u/r_s) \times C_s$$

r_u = peak response from the *Sample solution*

r_s = peak response from the *Standard solution*

C_s = concentration of the *Standard solution* (mg/mL)

Calculate the percentage of the labeled amount of levetiracetam ($C_8H_{14}N_2O_2$) dissolved at each time point (i):

$$\text{Result}_i = C_i \times V \times (1/L) \times 100$$

$$\text{Result}_2 = \{[C_2 \times (V - V_s)] + (C_1 \times V_s)\} \times (1/L) \times 100$$

$$\text{Result}_3 = \{(C_3 \times [V - (2 \times V_s)]) + [(C_2 + C_1) \times V_s]\} \times (1/L) \times 100$$

$$\text{Result}_4 = \{(C_4 \times [V - (3 \times V_s)]) + [(C_3 + C_2 + C_1) \times V_s]\} \times (1/L) \times 100$$

C_i = concentration of levetiracetam in the portion of sample withdrawn at time point i (mg/mL)

V = volume of *Medium*, 900 mL

L = label claim (mg/Tablet)

V_s = volume of the *Sample solution* withdrawn from the *Medium* (mL)

Tolerances: See [▲ Table 10](#).

Table 10▲ (RB 1-Jan-2020)

Time Point (i)	Time (h)	Amount Dissolved (%)
1	1	10–30
2	2	25–45
3	4	45–70
4	12	NLT 80

The percentages of the labeled amount of levetiracetam ($C_8H_{14}N_2O_2$), dissolved at the times specified, conform to [Dissolution \(711\)](#),

[Acceptance Table 2](#).

- [Uniformity of Dosage Units \(905\)](#): Meet the requirements

IMPURITIES

Change to read:

- [Organic Impurities](#)

Solution A: Dilute 2 mL of [phosphoric acid](#) with [water](#) to 1 L.

Diluent: [Acetonitrile](#) and [Solution A](#) (5:95)

Buffer: 1.4 g/L of [anhydrous dibasic sodium phosphate](#) in [water](#). Adjust with [phosphoric acid](#) to a pH of 3.5.

Mobile phase: [Acetonitrile](#) and [Buffer](#) (5:95). To each L of the mixture, add 1 g of [sodium 1-hexanesulfonate monohydrate](#).

System suitability solution: 0.3 mg/mL of [USP Levetiracetam RS](#) in [Diluent](#) prepared as follows. Dissolve the required amount of [USP](#)

[Levetiracetam RS](#) in 10% of the final volume of 0.1 N [potassium hydroxide](#). Let the mixture react at room temperature for about 15 min, and then neutralize by adding [0.1 N hydrochloric acid](#) at 10% of the flask volume. Dilute with [Diluent](#) to volume. [NOTE—This solution contains levetiracetam and levetiracetam acid.]

Standard solution: 12.5 μ g/mL of [USP Levetiracetam RS](#) in [water](#). Sonication may be used to aid in dissolution. Pass a portion of the solution through a suitable filter of 0.2- μ m pore size.

Sample solution: Nominally equivalent to 2.5 mg/mL of levetiracetam in [water](#), from a portion of crushed Tablets (NLT 20) prepared as follows. Transfer the weighed amount of crushed Tablet powder to a volumetric flask containing [water](#) to fill 80% of final volume. Sonicate in cold water for 10 min. Equilibrate to room temperature. Dilute with [water](#) to volume. Pass a portion through a suitable filter of 0.2- μ m pore size.

Alternatively, the *Sample solution* having a nominal concentration of 2–3 mg/mL of levetiracetam may be prepared as follows. Finely grind NLT 10 Tablets, and transfer an amount equivalent to one Tablet to a suitable volumetric flask. Add NLT 30 mL of [acetonitrile](#). Sonicate for 10 min, and shake using a mechanical shaker for 10 min. Add NLT 30 mL of [water](#), and shake for 15 min using a mechanical shaker. Allow the resulting mixture to equilibrate to room temperature. Add NMT 25% of the final flask volume of [acetonitrile](#). Dilute with [water](#) to volume. Centrifuge for 15 min, and pass a portion through a suitable filter of 0.45- μ m pore size.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 205 nm

Column: 4.6-mm \times 25-cm; 5- μ m packing [L1](#)

Temperatures

Column: 30°

Autosampler: 10°

Flow rate: 2 mL/min

Injection volume: 20 μ L

Run time: 5 times the retention time of levetiracetam

System suitability

Samples: *System suitability solution* and *Standard solution*

Suitability requirements

Resolution: NLT 1.5 between levetiracetam and levetiracetam acid peaks, *System suitability solution*

Tailing factor: NMT 2.0, *Standard solution*

Relative standard deviation: NMT 5.0%, *Standard solution*

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of any unspecified degradation product in the portion of Tablets taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_u = peak response of each impurity from the *Sample solution*

r_s = peak response of [USP Levetiracetam RS](#) from the *Standard solution* C_s = concentration of [USP Levetiracetam RS](#) in the *Standard solution* (mg/mL) C_u = nominal concentration of levetiracetam in the *Sample solution* (mg/mL)**Acceptance criteria:** See ▲ [Table 11](#).**Table 11** ▲ (RB 1-Jan-2020)

Name	Relative Retention Time	Acceptance Criteria, NMT (%)
Levetiracetam related compound B ^{a,b}	0.40	—
Levetiracetam	1.0	—
Levetiracetam acid ^c	1.3	0.30
Levetiracetam related compound A ^{b,d}	1.9	—
Any individual unspecified degradation product	—	0.10
Total impurities	—	1.0

^a (S)-2-Aminobutanamide.^b Process impurities controlled in the drug substance. Included for identification purposes only. Not reported for the drug product, and not included in total impurities.^c (S)-2-(2-Oxopyrrolidin-1-yl)butanoic acid.^d (S)-N-(1-Amino-1-oxobutan-2-yl)-4-chlorobutanamide.**ADDITIONAL REQUIREMENTS**

- PACKAGING AND STORAGE:** Preserve in well-closed containers. Store at controlled room temperature.
- LABELING:** When more than one *Dissolution* test is given, the labeling states the *Dissolution* test used only if *Test 1* is not used.
- USP REFERENCE STANDARDS (11).**
[USP Levetiracetam RS](#)

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
LEVETIRACETAM EXTENDED-RELEASE TABLETS	Documentary Standards Support	SM42020 Small Molecules 4

Chromatographic Database Information: [Chromatographic Database](#)**Most Recently Appeared In:**

Pharmacopeial Forum: Volume No. PF 38(4)

Current DocID: GUID-5244A22A-9798-433E-B0F4-72A83E2ADA57_6_en-US**DOI:** https://doi.org/10.31003/USPNF_M3890_06_01**DOI ref:** [93p7k](#)