

Status: Currently Official on 15-Feb-2025  
Official Date: Official Prior to 2013  
Document Type: USP Monographs  
DocId: GUID-5023CF2C-9465-4CF2-AE02-24C61B341B44\_1\_en-US  
DOI: [https://doi.org/10.31003/USPNF\\_M44300\\_01\\_01](https://doi.org/10.31003/USPNF_M44300_01_01)  
DOI Ref: f0ni0

© 2025 USPC  
Do not distribute

## Lanolin

### DEFINITION

Lanolin is the purified, wax-like substance from the wool of sheep, *Ovis aries* L. (Fam. Bovidae), that has been cleaned, decolorized, and deodorized. It contains NMT 0.25% of water. It may contain NMT 0.02% of a suitable antioxidant.

### IMPURITIES

- **RESIDUE ON IGNITION (281):** NMT 0.1%
- **CHLORIDE AND SULFATE, Chloride(221):**

**Sample solution:** Boil 20 mL of alcohol with 1.0 g of Lanolin under a reflux condenser. Cool, add 1 mL of 2 N nitric acid, and filter. To the filtrate add 5 drops of a solution of 20 mg/mL of silver nitrate in alcohol.

**Blank:** Boil 20 mL of alcohol under a reflux condenser. Cool, add 1 mL of 2 N nitric acid, and filter. To the filtrate add 5 drops of a solution of 20 mg/mL of silver nitrate in alcohol. Add 0.50 mL of 0.020 N hydrochloric acid.

**Acceptance criteria:** 0.035%; any turbidity produced by the *Sample solution* does not exceed that produced by the *Blank*.

### • FOREIGN SUBSTANCES

Use pesticide-free grade reagents and solvents throughout this test. [NOTE—Reference materials of pesticides for use in the *Standard solution* may be obtained from any commercial source.<sup>1</sup>]

**Standard stock solutions:** Prepare stock solutions for each reference pesticide containing 100 mg/L in hexane.

[NOTE—Concentrated stock solutions may be stored in glass-stoppered containers in a dark refrigerator at 2°–5° for up to 1 year. Most pesticides may be dissolved directly in hexane; however, the hexachlorocyclohexane isomers and the DDT group of pesticides may require initial dissolution in the minimum volume of acetone followed by dilution with hexane to the specified concentration.]

**Standard solution:** Dilute volumes of the *Standard stock solutions* quantitatively with hexane, and combine to obtain a composite *Standard solution* having the concentrations indicated in *Table 1*. Store the composite *Standard solution* in a glass-stoppered glass container in the dark at 2°–5°, and replace it every 2 months. [NOTE—Two or more separate composite *Standard solutions*, each preferably containing NMT 8 reference pesticides, may be prepared if needed. Reference pesticides should be selected for composite *Standard solutions* on the basis that relative retention times (see *Table 1*) differ sufficiently so that peaks in chromatograms will not be expected to overlap, and they should be selected and combined appropriately for the chromatographic system and detector used.]

Table 1

| Reference Pesticide <sup>a</sup>        | Standard Solution<br>(Concentration in $\mu$ g/mL) |                            | Relative Retention Times<br>(Relative to 1.0 for Chlorpyrifos) |           |
|-----------------------------------------|----------------------------------------------------|----------------------------|----------------------------------------------------------------|-----------|
|                                         | Electron-Capture Detector                          | Flame-Photometric Detector | System I                                                       | System II |
| Tetrachloronitrobenzene (TCBN)          | 0.05                                               | —                          | 0.29                                                           | 0.24      |
| alpha-Hexachlorocyclohexane (alpha BHC) | 0.05                                               | —                          | 0.40                                                           | 0.35      |
| beta-Hexachlorocyclohexane (beta BHC)   | 0.30                                               | —                          | 0.43                                                           | 0.56      |

| Reference Pesticide <sup>a</sup>                                     | Standard Solution<br>(Concentration in $\mu\text{g/mL}$ ) |                            | Relative Retention Times<br>(Relative to 1.0 for Chlorpyrifos) |           |
|----------------------------------------------------------------------|-----------------------------------------------------------|----------------------------|----------------------------------------------------------------|-----------|
|                                                                      | Electron-Capture Detector                                 | Flame-Photometric Detector | System I                                                       | System II |
| Hexachlorobenzene (HCB)                                              | 0.05                                                      | —                          | 0.45                                                           | 0.33      |
| gamma-Hexachlorocyclohexane (lindane)                                | 0.05                                                      | —                          | 0.48                                                           | 0.41      |
| Propetamphos                                                         | —                                                         | 0.30                       | 0.48                                                           | 0.42      |
| Diazinon                                                             | —                                                         | 0.20                       | 0.52                                                           | 0.40      |
| Dichlofenthion                                                       | 0.10                                                      | 0.20                       | 0.67                                                           | 0.56      |
| Ronnel                                                               | 0.30                                                      | 0.40                       | 0.81                                                           | 0.66      |
| Heptachlor                                                           | 0.10                                                      | —                          | 0.83                                                           | 0.60      |
| Malathion                                                            | —                                                         | 0.40                       | 0.91                                                           | 1.05      |
| Chlorpyrifos                                                         | 0.30                                                      | 0.30                       | 1.00                                                           | 1.00      |
| Aldrin                                                               | 0.20                                                      | —                          | 1.05                                                           | 0.76      |
| Pirimiphos ethyl                                                     | —                                                         | 0.40                       | 1.14                                                           | 1.14      |
| Chlorfenvinphos Z                                                    | 0.40                                                      | 0.40                       | 1.17                                                           | 1.40      |
| Heptachlor epoxide                                                   | 0.20                                                      | —                          | 1.29                                                           | 1.17      |
| Chlorfenvinphos E                                                    | 0.40                                                      | 0.50                       | 1.30                                                           | 1.51      |
| Bromophos ethyl                                                      | 0.40                                                      | 0.50                       | 1.51                                                           | 1.45      |
| 1,1'-Dichloro-2-(2-chlorophenyl)-2-(4-chlorophenyl)ethene (o,pp-DDE) | 0.30                                                      | —                          | 1.55                                                           | 1.51      |
| 1,1'-Dichloro-2-(4-chlorophenyl)-2-(4-chlorophenyl)ethene (p,pp-DDE) | 0.30                                                      | —                          | 1.88                                                           | 1.86      |
| Stirophos                                                            | 0.60                                                      | 0.80                       | 1.58                                                           | 1.97      |
| alpha-Endosulfan                                                     | 0.40                                                      | —                          | 1.63                                                           | 1.47      |
| 1,1'-Dichloro-2-(2-chlorophenyl)-2-(4-chlorophenyl)ethane (o,pp-TDE) | 0.40                                                      | —                          | 1.90                                                           | 2.19      |

| Reference Pesticide <sup>a</sup>                                                | Standard Solution<br>(Concentration in $\mu\text{g/mL}$ ) |                            | Relative Retention Times<br>(Relative to 1.0 for Chlorpyrifos) |           |
|---------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------|----------------------------------------------------------------|-----------|
|                                                                                 | Electron-Capture Detector                                 | Flame-Photometric Detector | System I                                                       | System II |
| Dieldrin                                                                        | 0.30                                                      | —                          | 1.91                                                           | 1.84      |
| Endrin                                                                          | 0.40                                                      | —                          | 2.13                                                           | 2.29      |
| beta-Endosulfan                                                                 | 0.40                                                      | —                          | 2.19                                                           | 2.77      |
| 1,1-Dichloro-2,2-bis(4-chlorophenyl)ethane ( <i>p,pp</i> -TDE)                  | 0.40                                                      | —                          | 2.41                                                           | 2.87      |
| 1,1,1-Trichloro-2-(2-chlorophenyl)-2-(4-chlorophenyl)ethane ( <i>o,pp</i> -DDT) | 0.40                                                      | —                          | 2.55                                                           | 2.70      |
| Ethion                                                                          | 1.00                                                      | 0.40                       | 2.56                                                           | 3.36      |
| Carbophenothion                                                                 | 0.80                                                      | 1.00                       | 2.94                                                           | 3.70      |
| 1,1,1-Trichloro-2,2-bis(4-chlorophenyl)ethane ( <i>p,p'</i> -DDT)               | 0.50                                                      | —                          | 3.13                                                           | 3.50      |
| Methoxychlor                                                                    | 0.60                                                      | —                          | 4.70                                                           | 7.20      |
| Carbophenothion sulfone                                                         | 5.00                                                      | —                          | 5.10                                                           | 9.20      |
| Carbophenothion sulfoxide                                                       | 5.00                                                      | —                          | 5.40                                                           | 10.00     |

<sup>a</sup> Suitable materials may be obtained from either Chem Service, 660 Tower Lane, P.O. Box 3108, Westchester, PA 19381-3108 or Greyhound, 88 Grange Road West, Birkenhead, Merseyside, L43 4XF, England U.K.

#### Gel permeation chromatography cleanup system

**Eluant:** Methylene chloride and hexane (1:1)

**Column:** 25-mm  $\times$  50-cm; packed with a slurry of 35 g of styrene–divinylbenzene copolymer beads compressed to a bed length of about 20 cm

**Operating pressure:** 8–11 psi

**Flow rate:** 5 mL/min

Set up the chromatograph, adjusting to discard the fraction eluting from 0 to 12 min. Collect the fraction eluting from 12 to 32 min, and rinse for 2 min, discarding the rinse fraction.

#### System suitability

**Elution of lanolin:** Melt a suitable quantity of Lanolin, and pass through a fluted filter paper into a container. Transfer 6.0 g to a 50-mL volumetric flask. Dilute with *Eluant* to volume, and filter. Transfer 5.0 mL of this solution to the gel permeation chromatographic column, and elute with *Eluant*. Collect 100 mL of the column effluent in tared beakers in 10-mL increments. Evaporate the solvent, cool, weigh the beakers and contents, and calculate the amount of lanolin eluted in each 10-mL increment. The column is suitable if NLT 96% of the lanolin elutes in the first 60 mL.

**Elution of pesticide from lanolin:** Dissolve suitable quantities of diazinon, diclofenthion, bromophos ethyl, lindane, and dieldrin in hexane to obtain a *Standard solution* having concentrations of 0.4, 0.4, 1.0, 0.1, and 0.6  $\mu\text{g/mL}$ , respectively. Transfer 5.0 mL of this solution to a 10-mL volumetric flask containing 1 g of [USP Lanolin RS](#). Dilute with methylene chloride to volume. Transfer 5 mL of this solution to the gel permeation chromatographic column, and elute with 160 mL of *Eluant*. Discard the first 60-mL fraction, and collect the next 100-mL

fraction (from 60 to 160 mL). Transfer this collection fraction to a concentrator fitted with a graduated collection flask, add 50 mL of hexane, and concentrate by evaporation to 5 mL. Inject this fraction into the chromatographs described in *Chromatographic system I* and *Chromatographic system II*. Record the chromatograms, and measure the heights of the peaks obtained from the five pesticides in the *Standard solution*. Calculate the recoveries of each of the five pesticides used in the fortified [USP Lanolin RS](#) solution.

Prepare a test solution by mixing hexane with the *Standard solution* (1:1). Inject this into the chromatographs described in

*Chromatographic system I* and *Chromatographic system II*. Record the chromatograms, and measure the peak heights of the five pesticides in the chromatogram of the *Sample solution*. Compare the peak heights from the fraction of the *Standard solution* to the peak heights of the corresponding pesticides from the *Sample solution*: NLT 85% of the added amounts of each of the five pesticides is recovered.

**Sample solution:** Transfer 6 g of Lanolin, previously melted to liquid form by heating on a hot water bath if necessary, to a 50-mL volumetric flask. Dissolve in 25 mL of *Eluant*, dilute with *Eluant* to volume, and filter. Transfer 5.0 mL of this solution to the column, and elute with 160 mL of *Eluant*. Discard the first 60-mL fraction, and collect the remaining fraction in a suitable evaporator. Concentrate by evaporation on a steam bath to 3 mL, add 50 mL of hexane, and evaporate again to remove all traces of methylene chloride, adjusting the volume with hexane to 3.0 mL.

#### Chromatographic system I

(See [Chromatography \(621\), System Suitability](#).)

**Mode:** GC

**Detector:** Electron capture

**Column:** 0.53-mm × 30-m fused silica capillary; bonded with a 1.5-μm layer of phase G1, and a 0.53-mm × 6-m fused silica uncoated guard column connected to a modified packed column-type injector system

**Column temperature:** 200°. [NOTE—The initial temperature of the column may be adjusted so that the retention times of ethion and *p,p'*-DDT are 2.56 and 3.1, respectively, relative to chlorpyrifos.]

**Carrier gas:** Helium

**Flow rate:** 25 mL/min. Adjust so that the retention time of chlorpyrifos is 4 min.

**Makeup gas:** Nitrogen, 40 mL per minute

**Injection volume:** 5 μL

#### Chromatographic system II

**Mode:** GC

**Detector:** Flame photometric

**Column:** 0.53-mm × 30-m fused silica capillary; bonded with a 1.0-μm layer of phase G3, and a 0.53-mm × 6-m fused silica uncoated guard column connected to a modified packed column-type injector system

**Column temperature:** 200°. [NOTE—The initial temperature of the column may be adjusted so that the retention time of ethion is 3.36 relative to that of chlorpyrifos.]

**Carrier gas:** Helium

**Flow rate:** 25 mL/min. Adjust so that the retention time of chlorpyrifos is 4 min.

**Makeup gas:** Nitrogen, 40 mL/min

**Injection volume:** 5 μL

#### Analysis

The following procedure is to be followed for *Chromatographic systems I* and *II*.

**Samples:** *Standard solution* and *Sample solution*

Calculate the quantity of the individual specified residue found in the sample taken:

$$\text{Result} = (r_U/r_S) \times (C/W) \times 30$$

$r_U$  = peak area of each residue from the *Sample solution*

$r_S$  = peak area of each residue from the *Standard solution*

$C$  = concentration of the reference pesticide in the *Standard solution* (mg/L)

$W$  = weight of Lanolin taken (g)

#### Acceptance criteria

**Individual specified residue:** NMT 10 ppm

**Total specified residue:** NMT 40 ppm

#### SPECIFIC TESTS

- [MELTING RANGE OR TEMPERATURE, Class II\(741\)](#)

**Analysis:** Determine on a sample previously cooled to 8°–10°.

**Acceptance criteria:** 38°–44°

- [FATS AND FIXED OILS, Acid Value \(Free Fatty Acids\) \(401\)](#)

**Sample:** 10.0 g

**Acceptance criteria:** The free acids obtained from the *Sample* require NMT 2.0 mL of 0.10 N sodium hydroxide for neutralization.

- [FATS AND FIXED OILS, Iodine Value \(401\)](#)

**Sample:** 780–820 mg

**Acceptance criteria:** 18–36

- [ALKALINITY](#)

**Sample:** 2.0 g

**Analysis:** Dissolve the *Sample* in 10 mL of ether, and add 2 drops of phenolphthalein TS.

**Acceptance criteria:** The liquid is not colored red.

- [WATER-SOLUBLE ACIDS AND ALKALIES](#)

**Sample:** 10.0 g

**Analysis:** Warm the *Sample* with 50 mL of water on a steam bath, constantly stirring the mixture until the Lanolin is melted.

**Acceptance criteria:** The fat separates completely on cooling, leaving the water layer nearly clear and neutral to litmus. Retain the water layer for the test for *Water-Soluble Oxidizable Substances* and *Ammonia*.

- [WATER-SOLUBLE OXIDIZABLE SUBSTANCES](#)

**Sample solution:** 10 mL of the solution from *Water-Soluble Acids and Alkalies*

**Analysis:** Add the *Sample solution* to 50 µL of 0.10 N potassium permanganate.

**Acceptance criteria:** The resulting solution does not completely decolorize within 10 min.

- [AMMONIA](#)

**Sample solution:** 10 mL of the solution from *Water-Soluble Acids and Alkalies*

**Analysis:** Add 1 mL of 1 N sodium hydroxide to the *Sample solution*, and boil.

**Acceptance criteria:** The vapors do not turn red litmus to blue.

- [WATER DETERMINATION, Method I \(921\)](#)

**Solution A:** Chloroform and methanol (3:2)

**Sample solution:** 250 mg/mL of Lanolin in *Solution A*

**Analysis:** Determine the water content of a 10.0-mL portion of the *Sample solution*. Perform a blank determination on 10.0 mL of *Solution A*, and make any necessary correction.

**Acceptance criteria:** NMT 0.25%

- [PETROLATUM](#)

**Sample:** 3 g

**Analysis:** Heat the *Sample* on a steam bath, with frequent stirring, until its weight loss is NLT its water content. Boil 40 mL of dehydrated alcohol with 500 mg of the dried lanolin so obtained.

**Acceptance criteria:** The solution is clear or NMT opalescent.

#### ADDITIONAL REQUIREMENTS

- [PACKAGING AND STORAGE:](#) Preserve in well-closed containers, preferably at controlled room temperature.

- [LABELING:](#) The label states that it is not to be used undiluted.

- [USP REFERENCE STANDARDS \(11\)](#)

[USP Lanolin RS](#)

<sup>1</sup> Suitable materials may be obtained from either Chem Service, 660 Tower Lane, P.O. Box 3108, Westchester, PA 19381-3108 or Greyhound, 88 Grange Road West, Birkenhead, Merseyside, L43 4XF, England U.K.

**Auxiliary Information** - Please [check for your question in the FAQs](#) before contacting USP.

| Topic/Question             | Contact                                                                     | Expert Committee          |
|----------------------------|-----------------------------------------------------------------------------|---------------------------|
| LANOLIN                    | <a href="#">Documentary Standards Support</a>                               | SM32020 Small Molecules 3 |
| REFERENCE STANDARD SUPPORT | RS Technical Services<br><a href="mailto:RSTECH@usp.org">RSTECH@usp.org</a> | SM32020 Small Molecules 3 |

**Most Recently Appeared In:**

Pharmacopeial Forum: Volume No. Information currently unavailable

**Current DocID: GUID-5023CF2C-9465-4CF2-AE02-24C61B341B44\_1\_en-US**

**DOI: [https://doi.org/10.31003/USPNF\\_M44300\\_01\\_01](https://doi.org/10.31003/USPNF_M44300_01_01)**

**DOI ref: f0ni0**

OFFICIAL