


Status: Currently Official on 15-Feb-2025
Official Date: Official as of 01-May-2020
Document Type: NF Monographs
DocId: GUID-0C0165CE-EF43-4469-AA78-8AD97BD5E676_4_en-US
DOI: https://doi.org/10.31003/USPNF_M3607_04_01
DOI Ref: iiq8a

© 2025 USPC
Do not distribute

Lactobionic Acid

$C_{12}H_{22}O_{12}$ (acid form) 358.30 CAS RN®: 96-82-2.

$C_{12}H_{20}O_{11}$ (δ -lactone) 340.28 CAS RN®: 5965-65-1.
4-O- β -D-Galactopyranosyl- β -gluconic acid.

DEFINITION

Lactobionic Acid is a mixture in variable proportions of 4-O- β -D-galactopyranosyl- β -gluconic acid and 4-O- β -D-galactopyranosyl- β -glucono-1,5-lactone. It contains NLT 98.0% and NMT 102.0%, on the anhydrous basis.

IDENTIFICATION

Change to read:

- A. **SPECTROSCOPIC IDENTIFICATION TESTS (197), Infrared Spectroscopy: 197K**. ▲ (CN 1-MAY-2020) [NOTE—If the spectra obtained show differences, dissolve the test substance and USP Lactobionic Acid RS separately in water, dry at 105°, and record new spectra using the residues.]
- B. **THIN-LAYER CHROMATOGRAPHY (621)**.

Standard solution: 10 mg/mL of USP Lactobionic Acid RS

Sample solution: 10 mg/mL of Lactobionic Acid

Adsorbent: Chromatographic silica gel mixture with an average particle size of 10–15 μ m (TLC plates)

Developing solvent: Methanol, ethyl acetate, ammonium hydroxide, and water (2:1:1:1)

Application volume: 5 μ L

Spray reagent: Slowly add 10 mL of sulfuric acid to about 40 mL of water. Mix, and allow to cool. Dilute with water to 100 mL, and mix. Add 2.5 g of ammonium molybdate and 1 g of ceric sulfate, and shake for 15 min to dissolve.

Analysis: Develop the chromatograms until the solvent front has moved about three-fourths the length of the plate, and allow to dry. Spray the plate with **Spray reagent**, and allow to dry. Repeat two more times, heat at 110° for 15 min, and examine.

Acceptance criteria: The principal spot from the **Sample solution** is similar in position and color to the principal spot from the **Standard solution**.

ASSAY

• PROCEDURE

Sample: 0.350 g of Lactobionic Acid

Analysis: Dissolve the **Sample** in 50 mL of carbon dioxide-free water, previously heated to 30°. Immediately titrate with 0.1 N sodium hydroxide, and determine the two equivalence points potentiometrically. (See Titrimetry (541).)

Each mL of 0.1 N sodium hydroxide consumed to the first equivalency point is equivalent to 35.83 mg of $C_{12}H_{22}O_{12}$ (corresponds to the acid form), and each mL of 0.1 N sodium hydroxide consumed between the first and second equivalency points is equivalent to 34.03 mg of $C_{12}H_{20}O_{11}$ (corresponds to the δ -lactone form).

Calculate the content, expressed as a percentage, of the lactobionic acid as the sum of both results.

Acceptance criteria: 98.0%–102.0% on the anhydrous basis

SPECIFIC TESTS**• WATER DETERMINATION, Method 1a (921)**

Sample solution: 0.50 g in a mixture of methanol and formamide (2:1)

Acceptance criteria: NMT 5.0%

• APPEARANCE OF SOLUTION

Sample solution: 120 mg/mL of Lactobionic Acid

Standard stock solution: Pipet 24.0 mL of ferric chloride CS and 6.0 mL of cobaltous chloride CS into a 100-mL volumetric flask. Dilute with 1% (w/v) hydrochloric acid to volume.

Reference solution: Pipet 12.5 mL of the *Standard stock solution* into a 100-mL volumetric flask. Dilute with 1% (w/v) hydrochloric acid to volume.

Acceptance criteria: The *Sample solution* is clear and not more intensely colored than the *Reference solution*.

• OPTICAL ROTATION, Specific Rotation (781S)

Sample solution: 10 mg/mL of Lactobionic Acid. Allow to stand for 24 h.

Acceptance criteria: +23.0° to +29.0° (anhydrous substance)

• REDUCING SUGARS

Sample solution: Dissolve 5.0 g of Lactobionic Acid in 25 mL of water with the aid of gentle heat, and cool.

Analysis: To the *Sample solution* add 20 mL of cupric citrate TS and a few glass beads. Heat so that boiling begins after 4 min, and maintain boiling for 3 min. Cool rapidly, and add 100 mL of a 2.4% solution of glacial acetic acid and 20.0 mL of 0.025 M iodine VS. With continuous shaking, add 25 mL of a mixture of 6 mL of hydrochloric acid and 94 mL of water. When the precipitate has dissolved, titrate the excess iodine with 0.05 M sodium thiosulfate VS using 1 mL of starch TS, added toward the end of the titration as an indicator.

Acceptance criteria: NLT 12.8 mL of 0.05 M sodium thiosulfate VS is required, corresponding to NMT 0.2% of reducing sugars, as glucose.

• ARTICLES OF BOTANICAL ORIGIN, Total Ash (561): NMT 0.2%**ADDITIONAL REQUIREMENTS****• PACKAGING AND STORAGE: Preserve in well-closed containers.****• USP REFERENCE STANDARDS (11)**

[USP Lactobionic Acid RS](#)

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
LACTOBIONIC ACID	Documentary Standards Support	SE2020 Simple Excipients

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 37(1)

Current DocID: GUID-0C0165CE-EF43-4469-AA78-8AD97BD5E676_4_en-US

DOI: https://doi.org/10.31003/USPNF_M3607_04_01

DOI ref: [iiq8a](#)