

Status: Currently Official on 15-Feb-2025
 Official Date: Official as of 01-May-2020
 Document Type: USP Monographs
 DocId: GUID-370BC3B4-88DD-4B88-A902-5F8921F921D5_4_en-US
 DOI: https://doi.org/10.31003/USPNF_M44030_04_01
 DOI Ref: k1h65

© 2025 USPC
 Do not distribute

Labetalol Hydrochloride

$C_{19}H_{24}N_2O_3 \cdot HCl$ 364.87

Benzamide, 2-hydroxy-5-[1-hydroxy-2-[(1-methyl-3-phenylpropyl)amino]ethyl]-, monohydrochloride.

5-[1-Hydroxy-2-[(1-methyl-3-phenylpropyl)amino]ethyl]salicylamide monohydrochloride CAS RN®: 32780-64-6; UNII: 1GEV3BAW9J.

» Labetalol Hydrochloride contains not less than 97.5 percent and not more than 101.0 percent of $C_{19}H_{24}N_2O_3 \cdot HCl$, calculated on the dried basis.

Packaging and storage—Preserve in tight, light-resistant containers. Store at 25°, excursions permitted between 15° and 30°.

USP REFERENCE STANDARDS (11)—

[USP Labetalol Hydrochloride RS](#)

Identification—

Change to read:

A: [▲ Spectroscopic Identification Tests \(197\), Infrared Spectroscopy: 197M](#)▲ (CN 1-May-2020) ·

B: It responds to the tests for [Chloride \(191\)](#).

pH (791): between 4.0 and 5.0, in a solution (1 in 100).

Loss on Drying (731): Dry it in a vacuum at 105° for 4 hours: it loses not more than 1.0% of its weight.

Residue on Ignition (281): not more than 0.1%.

Chromatographic purity—

Detection reagent—Transfer 2.5 g of cadmium acetate to a 500-mL volumetric flask, add 10 mL of glacial acetic acid, dilute with alcohol to volume, and mix. Just prior to use, prepare a 0.2 in 100 solution of ninhydrin in the cadmium acetate solution for use as the *Detection reagent*.

Solvent mixture—Prepare a solution of methanol and water (4:1), and mix.

Ammonium chloride reference solution—Dissolve 60 mg of ammonium chloride in 10.0 mL of water, and mix.

Standard stock solution—Dissolve [USP Labetalol Hydrochloride RS](#) in *Solvent mixture*, and mix to obtain a solution having a known concentration of 40 mg per mL.

Standard solution 1—Quantitatively dilute a portion of the *Standard stock solution* with *Solvent mixture* to obtain a solution having a known concentration of 0.2 mg per mL.

Standard solution 2—Quantitatively dilute a portion of the *Standard solution 1* with *Solvent mixture* to obtain a solution having a known concentration of 0.1 mg per mL.

Test solution—Dissolve 200 mg of Labetalol Hydrochloride in 5.0 mL of *Solvent mixture*, and mix.

Procedure I—Apply separately 5- μ L portions of the *Standard stock solution*, *Standard solution 1*, *Standard solution 2*, and the *Test solution* to a suitable thin-layer chromatographic plate (see [Chromatography \(621\)](#)) coated with a 0.25-mm layer of chromatographic silica gel mixture.

Allow the spots to dry, and develop the chromatograms in a solvent system consisting of a mixture of dichloromethane, methanol, and ammonium hydroxide (15:5:1) until the solvent front has moved about three-fourths of the length of the plate. Remove the plate from the developing chamber, mark the solvent front, and allow the solvent to evaporate. Examine the plate under short-wavelength UV light: the R_f value of the principal spot from the *Test solution* corresponds to that of the principal spot from the *Standard stock solution*.

Spray the plate with *Detection reagent*, heat the plate at 105° for 15 minutes, cool to room temperature, and examine the chromatogram: no individual secondary spot observed in the chromatogram of the *Test solution* is greater in size or intensity than the principal spot observed in the chromatogram of *Standard solution 1* (0.5% each). [NOTE—The spots appear as dark orange spots on a light orange to yellow background. A “negative image” spot (white) near the origin may be observed in the chromatogram of the *Test solution*. This is due to the formation of ammonium chloride during the chromatographic procedure and may be ignored.]

Procedure II—Apply separately 10- μ L portions of the *Ammonium chloride reference solution*, the *Standard stock solution*, *Standard solution 1*, *Standard solution 2*, and the *Test solution* to a suitable thin-layer chromatographic plate (see [Chromatography \(621\)](#)), coated with a 0.25-mm layer of chromatographic silica gel mixture. Allow the spots to dry, and develop the chromatograms in a solvent system consisting of a mixture of ethyl acetate, isopropyl alcohol, water, and ammonium hydroxide (25:15:8:2) until the solvent front has moved about three-

fourths of the length of the plate. Remove the plate from the developing chamber, mark the solvent front, and allow the solvent to evaporate. Examine the plate under short-wavelength UV light: no individual secondary spot (other than that due to ammonium chloride) observed in the chromatogram of the *Test solution* is greater in size or intensity than the principal spot observed in the chromatogram of *Standard solution 1* (0.5% each).

Total impurities—The sum of the intensities of all secondary spots (other than those due to ammonium chloride) observed in the chromatograms of the *Test solution* from both *Procedure I* and *Procedure II* does not exceed 1.0%.

Diastereoisomer ratio—

1-Butaneboronic acid solution—Dissolve 1-butaneboronic acid in pyridine, previously dried over a suitable molecular sieve, and mix to obtain a solution having a known concentration of 20 mg per mL.

System suitability solution—Dissolve an accurately weighed quantity of [USP Labetalol Hydrochloride RS](#) in **1-Butaneboronic acid solution**, and dilute quantitatively and stepwise with **1-Butaneboronic acid solution** to obtain a solution having a known concentration of about 1.4 mg of [USP Labetalol Hydrochloride RS](#) per mL. Allow the solution to stand at room temperature for 20 minutes before using.

Test solution—Transfer about 1 mg of Labetalol Hydrochloride to a 1-mL reaction vial, add 0.7 mL of **1-Butaneboronic acid solution**, and mix until the labetalol hydrochloride is completely dissolved. Allow the solution to stand at room temperature for 20 minutes before using.

Chromatographic system (see [CHROMATOGRAPHY \(621\)](#))—The gas chromatograph is equipped with a flame-ionization detector and a 2-mm × 1.8-m glass column packed with 10% phase G3 on 100- to 120-mesh support S1AB. The column temperature is maintained at about 320°, and the injection port and the detector block temperatures are maintained at about 340°. Nitrogen is used as the carrier gas at the flow rate of about 30 mL per minute. Chromatograph the **System suitability solution**, and record the peak responses as directed for *Procedure*: the relative retention times are about 0.8 for the diastereoisomer B 1-butaneboronate derivative and 1.0 for the diastereoisomer A 1-butaneboronate derivative; the resolution, *R*, between the diastereoisomer A 1-butaneboronate derivative and diastereoisomer B 1-butaneboronate derivative peaks is not less than 1.5; and the relative standard deviation of the ratios of the peak areas of the diastereoisomers for replicate injections is not more than 2.0%.

Procedure—Inject about 2 μ L of the *Test solution* into the chromatograph, record the chromatograms, and measure the responses for the major peaks. Calculate the diastereoisomer A content, in percentage, taken by the formula:

$$100r_A/(r_A + r_B)$$

in which r_A is the peak area of the diastereoisomer A 1-butaneboronate derivative peak; and r_B is the peak area of the diastereoisomer B 1-butaneboronate derivative peak. The diastereoisomer A content is not less than 45.0% and not more than 55.0%.

Assay—

Mobile phase—Prepare a suitable filtered and degassed mixture of 0.1 M monobasic sodium phosphate and methanol (65:35). Make adjustments if necessary (see *System Suitability* under [Chromatography \(621\)](#)).

Standard preparation—Dissolve an accurately weighed quantity of [USP Labetalol Hydrochloride RS](#) in **Mobile phase** to obtain a solution having a known concentration of about 0.4 mg per mL.

Assay preparation—Transfer about 40 mg of Labetalol Hydrochloride, accurately weighed, to a 100-mL volumetric flask, dilute with **Mobile phase** to volume, and mix.

Chromatographic system (see [CHROMATOGRAPHY \(621\)](#))—The liquid chromatograph is equipped with a 230-nm detector and a 4.6-mm × 20-cm column that contains packing L1 and is maintained at $60 \pm 1^\circ$. The flow rate is about 1.5 mL per minute. Chromatograph the **Standard preparation**, and record the peak responses as directed for *Procedure*: the column efficiency determined from the analyte peak is not less than 700 theoretical plates; the tailing factor for the analyte peak is not more than 2.0; and the relative standard deviation for replicate injections is not more than 1.5%.

Procedure—Separately inject equal volumes (about 5 μ L) of the **Standard preparation** and the **Assay preparation** into the chromatograph, record the chromatograms, and measure the area responses for the major peaks. Calculate the quantity, in mg, of labetalol hydrochloride ($C_{19}H_{24}N_2O_3 \cdot HCl$) in the portion of Labetalol Hydrochloride taken by the formula:

$$100C(r_U/r_S)$$

in which C is the concentration, in mg per mL, of [USP Labetalol Hydrochloride RS](#) in the **Standard preparation**; and r_U and r_S are the peak area responses obtained from the **Assay preparation** and the **Standard preparation**, respectively.

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
LABETALOL HYDROCHLORIDE	Documentary Standards Support	SM22020 Small Molecules 2

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. 48(2)

Current DocID: GUID-370BC3B4-88DD-4B88-A902-5F8921F921D5_4_en-US

DOI: https://doi.org/10.31003/USPNF_M44030_04_01

DOI ref: k1h65

OFFICIAL