

Status: Currently Official on 15-Feb-2025
Official Date: Official as of 01-May-2018
Document Type: USP Monographs
DocId: GUID-93FB5E9E-2F08-4CA3-B7CF-A84823D86B74_3_en-US
DOI: https://doi.org/10.31003/USPNF_M43828_03_01
DOI Ref: 5i51v

© 2025 USPC
Do not distribute

Kanamycin Injection

DEFINITION

Kanamycin Injection contains an amount of kanamycin sulfate equivalent to NLT 90.0% and NMT 115.0% of the labeled amount of kanamycin ($C_{18}H_{36}N_4O_{11}$). It contains suitable buffers and preservatives.

IDENTIFICATION

• A. [THIN-LAYER CHROMATOGRAPHIC IDENTIFICATION TEST \(201\)](#).

Sample solution: 1 mg/mL of kanamycin from Injection in water

Chromatographic system

Adsorbent: 0.25-mm layer of chromatographic silica gel mixture, heated at 110° for 1 h and cooled immediately before use

Application volume: 10 μ L

Developing solvent system: 150 mg/mL of monobasic potassium phosphate in water

Spray reagent: 10 mg/mL of ninhydrin in butyl alcohol

Analysis: Proceed as directed in the chapter. Allow the spots to dry, and develop in a chamber previously equilibrated for 18 h with the *Developing solvent system*. Remove the plate from the chamber, and air-dry. Spray the plate with *Spray reagent*, and dry at 110° for 10 min.

Acceptance criteria: Meets the requirements

• B. The retention time of the kanamycin peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.

ASSAY

• PROCEDURE

Mobile phase: 0.115 N sodium hydroxide solution

System suitability solution: 20 μ g/mL of [USP Amikacin RS](#) and 8 μ g/mL of [USP Kanamycin Sulfate RS](#) in water

Standard solution: 8 μ g/mL of [USP Kanamycin Sulfate RS](#) in water

Sample solution: Nominally 6 μ g/mL of kanamycin from Injection in water

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: Electrochemical

Mode: Integrated amperometric

Range: 300 nC

Output: 1 V full-scale

Electrodes

Indicator: Gold

Reference: pH silver–silver chloride

Waveform: See [Table 1](#).

Table 1

Time (s)	Potential (V)	Integration
0.00	+0.04	—
0.30	+0.04	Begin
0.50	+0.04	End

Time (s)	Potential (V)	Integration
0.51	+0.80	—
0.70	+0.80	—
0.71	-0.80	—
0.90	-0.80	—

Columns**Guard:** Packing L47**Analytical:** 4-mm × 25-cm; packing L47**Flow rate:** 0.5 mL/min**Injection volume:** 20 µL**System suitability****Samples:** System suitability solution and Standard solution

[NOTE—The relative retention times for kanamycin and amikacin are about 1.0 and 1.3, respectively.]

Suitability requirements**Resolution:** NLT 3 between kanamycin and amikacin, System suitability solution**Tailing factor:** NMT 2, Standard solution**Relative standard deviation:** NMT 2.0%, Standard solution**Analysis****Samples:** Standard solution and Sample solutionCalculate the percentage of the labeled amount of kanamycin ($C_{18}H_{36}N_4O_{11}$) in the portion of Injection taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times P \times F \times 100$$

 r_U = peak area from the Sample solution r_S = peak area from the Standard solution C_S = concentration of [USP Kanamycin Sulfate RS](#) in the Standard solution (µg/mL) C_U = nominal concentration of kanamycin in the Sample solution (µg/mL) P = potency of kanamycin in [USP Kanamycin Sulfate RS](#) (µg/mg) F = conversion factor, 0.001 mg/µg**Acceptance criteria:** 90.0%–115.0%**SPECIFIC TESTS**

- [pH \(791\)](#): 3.5–5.0
- [BACTERIAL ENDOTOXINS TEST \(85\)](#): NMT 0.67 USP Endotoxin Unit/mg of kanamycin
- [STERILITY TESTS \(71\)](#): It meets the requirements when tested as directed in [Test for Sterility of the Product to Be Examined, Membrane Filtration](#).
- [PARTICULATE MATTER IN INJECTIONS \(788\)](#): Meets the requirements for small-volume injections
- [OTHER REQUIREMENTS](#): It meets the requirements in [Injections and Implanted Drug Products \(1\)](#).

ADDITIONAL REQUIREMENTS

- [PACKAGING AND STORAGE](#): Preserve in single-dose or multiple-dose containers, preferably of Type I or Type III glass.

- [USP REFERENCE STANDARDS \(11\)](#):

[USP Amikacin RS](#)[USP Kanamycin Sulfate RS](#)

Topic/Question	Contact	Expert Committee
KANAMYCIN INJECTION	Documentary Standards Support	SM12020 Small Molecules 1
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM12020 Small Molecules 1

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 26(6)

Current DocID: GUID-93FB5E9E-2F08-4CA3-B7CF-A84823D86B74_3_en-US

Previous DocID: GUID-93FB5E9E-2F08-4CA3-B7CF-A84823D86B74_1_en-US

DOI: https://doi.org/10.31003/USPNF_M43828_03_01

DOI ref: 5i51v

OFFICIAL