

Status: Currently Official on 14-Feb-2025
Official Date: Official as of 01-Aug-2021
Document Type: USP Monographs
DocId: GUID-47FD8DF7-BA38-42C1-887A-4B6FBEEE28A2_5_en-US
DOI: https://doi.org/10.31003/USPNF_M43726_05_01
DOI Ref: op76t

© 2025 USPC
Do not distribute

Itraconazole Capsules

DEFINITION

Itraconazole Capsules contain NLT 90.0% and NMT 110.0% of the labeled amount of itraconazole ($C_{35}H_{38}Cl_2N_8O_4$).

IDENTIFICATION

- **A.** The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.
- **B.** The UV spectrum of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.

ASSAY

• PROCEDURE

Solution A: 5.8 g/L of [monobasic ammonium phosphate](#) in [water](#). Adjust with [phosphoric acid](#) to a pH of 2.0. Pass through a suitable filter of 0.45- μ m pore size.

Solution B: [Acetonitrile](#) and [tetrahydrofuran](#) (90:10)

Mobile phase: *Solution A* and *Solution B* (45:55)

Diluent: [Methanol](#) and [tetrahydrofuran](#) (50:50)

Standard solution: 0.1 mg/mL of [USP Itraconazole RS](#) in *Diluent*. Sonicate, if necessary, to dissolve.

Sample stock solution: Nominally 1 mg/mL of itraconazole in *Diluent* prepared as follows. Transfer an amount nominally equivalent to 100 mg of itraconazole, from the contents of NLT 20 Capsules, to a 100-mL volumetric flask. Add 70 mL of *Diluent*, and sonicate for about 30 min. Dilute with *Diluent* to volume. Pass through a suitable filter of 0.45- μ m pore size.

Sample solution: Nominally 0.1 mg/mL of itraconazole in *Diluent* from the *Sample stock solution*

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 225 nm. For *Identification B*, use a diode array detector in the range of 200–400 nm.

Column: 4.6-mm \times 15-cm; 3- μ m packing [L1](#)

Column temperature: 30°

Flow rate: 1.5 mL/min

Injection volume: 10 μ L

Run time: NLT 2 times the retention time of itraconazole

System suitability

Sample: *Standard solution*

Suitability requirements

Tailing factor: NMT 2.0

Relative standard deviation: NMT 2.0%

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of the labeled amount of itraconazole ($C_{35}H_{38}Cl_2N_8O_4$) in the portion of Capsules taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_u = peak response of itraconazole from the *Sample solution*

r_s = peak response of itraconazole from the *Standard solution*

C_s = concentration of [USP Itraconazole RS](#) in the *Standard solution* (mg/mL)

C_u = nominal concentration of itraconazole in the *Sample solution* (mg/mL)

Acceptance criteria: 90.0%–110.0%

PERFORMANCE TESTS

Change to read:

- [Dissolution \(711\)](#)

Test 1

Medium: 0.25% (w/v) sodium lauryl sulfate in [0.1 N hydrochloric acid](#); 900 mL

Apparatus 2: 75 rpm; with a three-prong sinker

Time: 45 min

Standard stock solution: 0.55 mg/mL of [USP Itraconazole RS](#) in 40% [glacial acetic acid](#). Sonicate, if necessary, to dissolve.

Standard solution: 0.02 mg/mL of [USP Itraconazole RS](#) in *Medium* from the *Standard stock solution*

Sample solution: A filtered portion of the solution under test, suitably diluted with *Medium*, to obtain a concentration similar to that of the *Standard solution*.

Blank: *Medium*

Instrumental conditions

Mode: UV

Analytical wavelength: 260 nm

System suitability

Sample: *Standard solution*

Suitability requirements

Relative standard deviation: NMT 2.0% for 5 replicates

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of the labeled amount of itraconazole ($C_{35}H_{38}Cl_2N_8O_4$) released:

$$\text{Result} = (A_u/A_s) \times (C_s/L) \times V \times D \times 100$$

A_u = absorbance of the *Sample solution*

A_s = absorbance of the *Standard solution*

C_s = concentration of [USP Itraconazole RS](#) in the *Standard solution* (mg/mL)

L = label claim (mg/Capsule)

V = volume of *Medium*, 900 mL

D = dilution factor for the *Sample solution*, if applicable

Tolerances: NLT 80% (Q) of the labeled amount of itraconazole ($C_{35}H_{38}Cl_2N_8O_4$) is dissolved.

Test 2: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 2*. All solutions containing itraconazole should be stored in low-actinic or amber glassware and protected from light.

Medium: Simulated gastric fluid without enzymes, deaerated; 900 mL

Apparatus 2: 100 rpm; with a sinker, ▲if necessary▲ (USP 1-Aug-2021)

Time: 60 min

▲Quantify the amount of itraconazole dissolved by one of the following procedures.

Spectrophotometric procedure▲ (USP 1-Aug-2021)

Standard stock solution: 0.55 mg/mL of [USP Itraconazole RS](#) in methanol prepared as follows. Transfer a suitable amount of [USP Itraconazole RS](#) to a suitable volumetric flask and add about 80% of the flask volume of methanol. Heat the solution to 65° in a water bath, with intermittent stirring, until dissolved. Dilute with methanol to final volume.

Standard solution: 0.022 mg/mL of [USP Itraconazole RS](#) in *Medium* from the *Standard stock solution*

Sample solution: Pass a portion of the solution under test through a suitable filter and dilute with *Medium*, if necessary.

Blank: *Medium*

Instrumental conditions

Mode: UV

Analytical wavelength: 255 nm

System suitability

Sample: *Standard solution*

Suitability requirements

Relative standard deviation: NMT 2.0%

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of the labeled amount of itraconazole ($C_{35}H_{38}Cl_2N_8O_4$) dissolved:

$$\text{Result} = (A_u/A_s) \times (C_s/L) \times V \times D \times 100$$

A_u = absorbance of the *Sample solution*

A_s = absorbance of the *Standard solution*

C_S = concentration of [USP Itraconazole RS](#) in the *Standard solution* (mg/mL) L = label claim (mg/Capsule) V = volume of *Medium*, 900 mL D = dilution factor for the *Sample solution*, if applicable**▲ Chromatographic procedure****Buffer:** 1 mL/L of [triethylamine](#) in [water](#). Adjust with [phosphoric acid](#) to a pH of 2.5.**Mobile phase:** [Acetonitrile](#) and *Buffer* (60:40)**Standard stock solution:** 0.55 mg/mL of [USP Itraconazole RS](#) in [acetonitrile](#). Sonicate, if necessary, to dissolve prior to final dilution.**Standard solution:** 0.11 mg/mL of [USP Itraconazole RS](#) in *Medium* prepared from the *Standard stock solution***Sample solution:** Pass a portion of the solution under test through a suitable filter and dilute with *Medium*, if necessary.**Chromatographic system**(See [Chromatography \(621\), System Suitability](#).)**Mode:** LC**Detector:** UV 260 nm**Column:** 4.6-mm x 15-cm; 5- μ m packing [L7](#)**Column temperature:** 30°**Flow rate:** 1.2 mL/min**Injection volume:** 10 μ L**Run time:** NLT 1.5 times the retention time of itraconazole**System suitability****Sample:** *Standard solution***Suitability requirements****Tailing factor:** NMT 2.0**Relative standard deviation:** NMT 2.0%**Analysis****Samples:** *Standard solution* and *Sample solution*Calculate the percentage of the labeled amount of itraconazole ($C_{35}H_{38}Cl_2N_8O_4$) dissolved:

Result = $(r_U/r_S) \times (C_S/L) \times V \times D \times 100$

 r_U = peak response of itraconazole from the *Sample solution* r_S = peak response of itraconazole from the *Standard solution* C_S = concentration of [USP Itraconazole RS](#) in the *Standard solution* (mg/mL) L = label claim (mg/Capsule) V = volume of *Medium*, 900 mL D = dilution factor for the *Sample solution*, if applicable ▲ (USP 1-Aug-2021)**Tolerances:** NLT 80% (Q) of the labeled amount of itraconazole ($C_{35}H_{38}Cl_2N_8O_4$) is dissolved.

- [UNIFORMITY OF DOSAGE UNITS \(905\)](#): Meet the requirements

IMPURITIES• **ORGANIC IMPURITIES****Solution A, Solution B, and Diluent:** Prepare as directed in the Assay.**Mobile phase:** See [Table 1](#).**Table 1**

Time (min)	Solution A (%)	Solution B (%)
0	60	40
25	45	55
40	45	55
42	60	40

Time (min)	Solution A (%)	Solution B (%)
50	60	40

System suitability solution: 5 mg/mL of [USP Itraconazole System Suitability Mixture RS](#) in *Diluent*. Sonicate, if necessary, to dissolve.

Standard solution: 0.025 mg/mL of [USP Itraconazole RS](#) in *Diluent*. Sonicate, if necessary, to dissolve.

Sample solution: Nominally 5 mg/mL of itraconazole in *Diluent* prepared as follows. Combine the contents of NLT 20 Capsules and transfer a portion nominally equivalent to 500 mg of itraconazole to a 100-mL flask. Add about 70 mL of *Diluent* and sonicate for 30 min with intermittent shaking. Dilute with *Diluent* to volume. Pass through a suitable filter of 0.45- μ m pore size.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 225 nm

Column: 4.6-mm \times 15-cm; 3- μ m packing L1

Column temperature: 30°

Flow rate: 1.5 mL/min

Injection volume: 10 μ L

System suitability

Samples: System suitability solution and Standard solution

[NOTE—See [Table 2](#) for relative retention times.]

Suitability requirements

Resolution: NLT 1.5 between itraconazole and *n*-butyl isomer, System suitability solution

Tailing factor: NMT 2.0, Standard solution

Relative standard deviation: NMT 10.0%, Standard solution

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of any individual impurity in the portion of Capsules taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_u = peak response of any individual impurity from the Sample solution

r_s = peak response of itraconazole from the Standard solution

C_s = concentration of [USP Itraconazole RS](#) in the Standard solution (mg/mL)

C_u = nominal concentration of itraconazole in the Sample solution (mg/mL)

Acceptance criteria: See [Table 2](#).

Table 2

Name	Relative Retention Time	Acceptance Criteria, NMT (%)
4-Methoxy derivative ^{a,b}	0.28	—
4-Triazolyl isomer ^{b,c}	0.64	—
Propyl and isopropyl analog ^{b,d,e}	0.77	—
Epimer ^{b,f}	0.84	—
Itraconazole	1.0	—
<i>n</i> -Butyl isomer ^{b,g}	1.1	—
Didioxolanyl analog ^{b,h}	1.4	—
Any individual unspecified impurity	—	0.2

Name	Relative Retention Time	Acceptance Criteria, NMT (%)
Total impurities	—	1.50

^a 2-sec-Butyl-4-(4-[4-(4-methoxyphenyl)piperazin-1-yl]phenyl)-2H-1,2,4-triazol-3(4H)-one.

^b Process-related impurity included in the table for identification only. Process-related impurities are controlled in the drug substance and are not to be reported or included in the total impurities of the drug product.

^c 4-(4-[4-(4-((2RS,4SR)-2-[(4H-1,2,4-Triazol-4-yl)methyl]-2-(2,4-dichlorophenyl)-1,3-dioxolan-4-yl)methoxy)phenyl]piperazin-1-yl)phenyl)-2-sec-butyl-2,4-dihydro-3H-1,2,4-triazol-3-one.

^d 4-(4-[4-(4-((2RS,4SR)-2-[(1H-1,2,4-Triazol-1-yl)methyl]-2-(2,4-dichlorophenyl)-1,3-dioxolan-4-yl)methoxy)phenyl]piperazin-1-yl)phenyl)-2-propyl-2,4-dihydro-3H-1,2,4-triazol-3-one.

^e 4-(4-[4-(4-((2RS,4SR)-2-[(1H-1,2,4-Triazol-1-yl)methyl]-2-(2,4-dichlorophenyl)-1,3-dioxolan-4-yl)methoxy)phenyl]piperazin-1-yl)phenyl)-2-isopropyl-2,4-dihydro-3H-1,2,4-triazol-3-one.

^f 4-(4-[4-(4-((2RS,4RS)-2-[(1H-1,2,4-Triazol-1-yl)methyl]-2-(2,4-dichlorophenyl)-1,3-dioxolan-4-yl)methoxy)phenyl]piperazin-1-yl)phenyl)-2-sec-butyl-2,4-dihydro-3H-1,2,4-triazol-3-one.

^g 4-(4-[4-(4-((2RS,4SR)-2-[(1H-1,2,4-Triazol-1-yl)methyl]-2-(2,4-dichlorophenyl)-1,3-dioxolan-4-yl)methoxy)phenyl]piperazin-1-yl)phenyl)-2-butyl-2,4-dihydro-3H-1,2,4-triazol-3-one.

^h Mixture of 4-(4-[4-(4-((2RS,4SR)-2-[(1H-1,2,4-Triazol-1-yl)methyl]-2-(2,4-dichlorophenyl)-1,3-dioxolan-4-yl)methoxy)phenyl]piperazin-1-yl)phenyl)-2-((2RS,4SR)-2-[(1H-1,2,4-triazol-1-yl)methyl]-2-(2,4-dichlorophenyl)-1,3-dioxolan-4-yl)methyl)-2,4-dihydro-3H-1,2,4-triazol-3-one and 4-(4-[4-(4-((2RS,4SR)-2-[(1H-1,2,4-Triazol-1-yl)methyl]-2-(2,4-dichlorophenyl)-1,3-dioxolan-4-yl)methoxy)phenyl]piperazin-1-yl)phenyl)-2-((2SR,4RS)-2-[(1H-1,2,4-triazol-1-yl)methyl]-2-(2,4-dichlorophenyl)-1,3-dioxolan-4-yl)methyl)-2,4-dihydro-3H-1,2,4-triazol-3-one.

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in tight, light-resistant containers. Store at controlled room temperature.
- **LABELING:** When more than one *Dissolution* test is given, the labeling states the *Dissolution* test used only if Test 1 is not used.
- **USP REFERENCE STANDARDS (11).**

[USP Itraconazole RS](#)

[USP Itraconazole System Suitability Mixture RS](#)

This is a mixture of itraconazole, 4-triazolyl isomer, propyl analog, epimer, *n*-butyl isomer, and didioxolanyl analog (other impurities may also be present).

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
ITRACONAZOLE CAPSULES	Documentary Standards Support	SM12020 Small Molecules 1

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. 46(2)

Current DocID: [GUID-47FD8DF7-BA38-42C1-887A-4B6FBEEE28A2_5_en-US](#)

DOI: https://doi.org/10.31003/USPNF_M43726_05_01

DOI ref: [op76t](#)