

Status: Currently Official on 18-Feb-2025
Official Date: Official as of 01-Dec-2023
Document Type: USP Monographs
DocId: GUID-BB4FDDCA-57D6-4A43-825F-955A69FF20A7_6_en-US
DOI: https://doi.org/10.31003/USPNF_M43140_06_01
DOI Ref: Osme6

© 2025 USPC
Do not distribute

Isopropyl Alcohol

C₃H₈O 60.10

2-Propanol;

Isopropanol CAS RN®: 67-63-0.

DEFINITION

Isopropyl Alcohol contains NLT 99.0% of isopropyl alcohol (C₃H₈O).

IDENTIFICATION

- A. [SPECTROSCOPIC IDENTIFICATION TESTS \(197\), Infrared Spectroscopy](#): 197F
- B. The retention time of the major peak of the Sample corresponds to the 2-propanol peak of the *System suitability solution*, as obtained in the Assay.
- C. [LIMIT OF METHANOL](#)

[NOTE—This test must be performed to be in compliance with USP, in addition to *Identification A* and *B* above.]

System suitability solution, Sample, Standard solution A, Chromatographic system, and System suitability: Proceed as directed in the Assay and *Limit of Volatile Impurities* test.

Analysis: Proceed as directed in the *Limit of Volatile Impurities* test, *Methanol calculation*.

Acceptance criteria: Meets the requirements in [Table 3](#) for methanol

ASSAY

Change to read:

• PROCEDURE

System suitability solution: ▲Transfer 1 μL of methanol and 5 μL of ethyl acetate into a 5-mL volumetric flask, and dilute to volume with [USP 2-Propanol System Suitability RS](#) to have ▲ (USP 1-Dec-2023) 200 μL/L of methanol and 1000 μL/L of ethyl acetate in [USP 2-Propanol System Suitability RS](#).

Sample: Isopropyl Alcohol (substance under test)

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: GC

Detector: Flame ionization

Column: 0.25-mm × 60-m fused silica column, coated with a 1.4-μm film of phase [G43](#)

Temperatures

Detector: 200°

Injection port: 150°

Column: See [Table 1](#).

Table 1

Initial Temperature (°)	Temperature Ramp (°/min)	Final Temperature (°)	Hold Time at Final Temperature (min)
35	—	35	5
35	1	45	—
45	10	100	5

Carrier gas: Helium

Flow rate: 2.3 mL/min**Injection volume:** 1 μ L**Injection type:** Split, split ratio 50:1. [Note—A 4-mm straight liner is suitable.]**Run time:** 26 min**System suitability****Sample:** System suitability solution[Note—See [Table 2](#).]**Table 2**

Name	Relative Retention Time
Methanol	0.5
Ethyl ether	0.8
Acetone	0.9
Isopropyl alcohol	1.0
Diisopropyl ether	1.3
n-Propyl alcohol (1-propanol)	1.4
Ethyl acetate ^a	1.6
2-Butanol	1.7

^a Ethyl acetate Δ (USP 1-Dec-2023) is not a known impurity. It is used for calculation of unspecified impurities only.

Suitability requirements**Resolution:** NLT 1.5 between acetone and isopropyl alcohol**Tailing factor:** NMT 2.0 for the isopropyl alcohol peak**Relative standard deviation:** NMT 2.0% for the isopropyl alcohol peak of 6 replicate injections, *System suitability solution***Signal-to-noise ratio:** NLT 10 for any of the following peaks: methanol, ethyl ether, acetone, Δ (USP 1-Dec-2023) diisopropyl ether, 1-propanol, 2-butanol, and ethyl acetate**Analysis****Sample:** *Sample*Calculate the percentage of isopropyl alcohol (C_3H_8O) in the portion of Isopropyl Alcohol taken:

$$\text{Result} = (r_U/r_T) \times 100$$

r_U = peak response of isopropyl alcohol from the *Sample*

r_T = sum of all the peak responses from the *Sample*

Acceptance criteria: NLT 99.0%**IMPURITIES****• LIMIT OF VOLATILE IMPURITIES****System suitability solution, Sample, Chromatographic system, and System suitability:** Proceed as directed in the Assay.**Standard solution A:** 200 μ L/L of methanol in the *Sample*[Note—To be performed as a part of *Identification C*.]**Standard solution B:** 1000 μ L/L each of acetone, diisopropyl ether, ethyl ether, 1-propanol, 2-butanol, and ethyl acetate in the *Sample***Analysis****Samples:** *Sample*, *Standard solution A*, and *Standard solution B***Methanol calculation:**[Note—To be performed as a part of *Identification C*.]

$$\text{Result } (\% \text{ v/v}) = \{[M_U/(M_S - M_U)] \times C_M\}/10,000$$

M_U = peak area of methanol from the *Sample*

M_S = peak area of methanol from *Standard solution A* C_M = concentration of spiked methanol from *Standard solution A* ($\mu\text{L}/\text{L}$)**Individual known impurity (ethyl ether, acetone, diisopropyl ether, 1-propanol, 2-butanol) calculation:**

$$\text{Result } (\% \text{ v/v}) = \{[K_U/(K_S - K_U)] \times C_K\}/10,000$$

 K_U = peak area of individual known impurity from the *Sample* K_S = peak area of individual known impurity from *Standard solution B* C_K = concentration of spiked individual known impurity from *Standard solution B* ($\mu\text{L}/\text{L}$)**Individual unspecified impurity calculation:**

$$\text{Result } (\% \text{ v/v}) = [(r_U/r_S) \times C_S]/10,000$$

 r_U = peak area of each unspecified impurity from the *Sample* r_S = peak area of ethyl acetate from *Standard solution B* C_S = concentration of ethyl acetate from *Standard solution B* ($\mu\text{L}/\text{L}$)**Acceptance criteria:** See [Table 3](#).**Table 3**

Impurity	Percentage (% v/v)
Methanol ^a	NMT 0.02 ^a
Each other individual known impurity (ethyl ether, acetone, diisopropyl ether, 1-propanol, 2-butanol)	NMT 0.1
Individual unspecified impurity	NMT 0.1
Total impurities	NMT 1.0

^a To be performed as a part of *Identification C*.**• LIMIT OF NONVOLATILE RESIDUE****Sample:** 50 mL**Analysis:** Evaporate the *Sample* in a tared porcelain dish on a steam bath to dryness, and heat at 105° for 1 h.**Acceptance criteria:** NMT 2.5 mg (0.005%)**SPECIFIC TESTS****• SPECIFIC GRAVITY (841):** 0.783–0.787**• REFRACTIVE INDEX (831):** 1.376–1.378 at 20°**• ACIDITY****Sample solution:** To 50 mL of Isopropyl Alcohol add 100 mL of [carbon dioxide-free water](#).**Analysis:** To the *Sample solution* add 2 drops of [phenolphthalein TS](#), and titrate with 0.020 N sodium hydroxide to a pink color that persists for 30 s.**Acceptance criteria:** NMT 0.70 mL of 0.020 N sodium hydroxide is required for neutralization.**• WATER DETERMINATION (921), Method I****Sample:** 5.0 g**Acceptance criteria:** NMT 0.5%**Add the following:****▲• ULTRAVIOLET ABSORPTION****Sample:** Isopropyl Alcohol**Analytical wavelength:** 230–310 nm**Cell:** 1 cm**Reference:** Water**Acceptance criteria****Absorbance:** NMT 0.30 at 230 nm; NMT 0.10 at 250 nm; NMT 0.03 at 270 nm; NMT 0.02 at 290 nm; NMT 0.01 at 310 nm**Curve:** The spectrum shows a steadily descending curve with no observable peaks or shoulders.▲ (USP 1-Dec-2023)

Isopropyl Alcohol

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in tight containers, and prevent exposure to excessive heat. Protect from light.

- **USP REFERENCE STANDARDS (11):**

[USP 2-Propanol RS](#)

[USP 2-Propanol System Suitability RS](#)

It contains isopropyl alcohol with 0.1% each of ethyl ether, acetone, diisopropyl ether, 1-propanol, and 2-butanol.

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
ISOPROPYL ALCOHOL	Documentary Standards Support	SE2020 Simple Excipients
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SE2020 Simple Excipients

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. 48(3)

Current DocID: [GUID-BB4FDDCA-57D6-4A43-825F-955A69FF20A7_6_en-US](#)

DOI: https://doi.org/10.31003/USPNF_M43140_06_01

DOI ref: [0sme6](#)

OFFICIAL