

Status: Currently Official on 14-Feb-2025
Official Date: Official as of 01-Sep-2022
Document Type: USP Monographs
DocId: GUID-D5E569FD-6848-4E35-A5A3-B492E5BC6B50_5_en-US
DOI: https://doi.org/10.31003/USPNF_M42489_05_01
DOI Ref: 6ph6q

© 2025 USPC
Do not distribute

Irinotecan Hydrochloride Injection

Change to read:

DEFINITION

Irinotecan Hydrochloride Injection is a sterile solution of Irinotecan Hydrochloride in Water for Injection. It contains **▲NLT** (ERR 1-Sep-2022) 90.0% and NMT 110.0% of the labeled amount of irinotecan hydrochloride ($C_{33}H_{38}N_4O_6 \cdot HCl \cdot 3H_2O$).

IDENTIFICATION

• A. [SPECTROSCOPIC IDENTIFICATION TESTS \(197\), Ultraviolet-Visible Spectroscopy: 197U](#)

Sample solution: 4 µg/mL

Medium: Methanol

• B. The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.

ASSAY

• **PROCEDURE**

Buffer: Dissolve 2 g of sodium 1-hexanesulfonate and 2 mL of triethylamine in 1 L of water.

Mobile phase: Acetonitrile and *Buffer* (34:66). Adjust with phosphoric acid to a pH of 2.5.

Standard solution: 0.04 mg/mL of [USP Irinotecan Hydrochloride RS](#) in *Mobile phase*. Sonication and shaking may be used to aid dissolution.

Sample solution: 0.04 mg/mL of irinotecan hydrochloride in *Mobile phase* from Injection

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 254 nm

Column: 4.6-mm × 25-cm; 5-µm packing L7

Flow rate: 1 mL/min

Injection volume: 10 µL

System suitability

Sample: *Standard solution*

Suitability requirements

Tailing factor: NMT 2.5

Relative standard deviation: NMT 1.0%

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of the labeled amount of irinotecan hydrochloride ($C_{33}H_{38}N_4O_6 \cdot HCl \cdot 3H_2O$) in the portion of Injection taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times (M_{r1}/M_{r2}) \times 100$$

r_U = peak area from the *Sample solution*

r_S = peak area from the *Standard solution*

C_S = concentration of [USP Irinotecan Hydrochloride RS](#) in the *Standard solution* (mg/mL)

C_U = nominal concentration of irinotecan hydrochloride in the *Sample solution* (mg/mL)

M_{r1} = molecular weight of irinotecan hydrochloride ($C_{33}H_{38}N_4O_6 \cdot HCl \cdot 3H_2O$), 677.18

M_{r2} = molecular weight of irinotecan hydrochloride, anhydrous ($C_{33}H_{38}N_4O_6 \cdot HCl$), 623.14

Acceptance criteria: 90.0%–110.0%

IMPURITIES

• **ORGANIC IMPURITIES**

Solution A: Dissolve 2 g of sodium 1-hexanesulfonate and 1 mL of triethylamine in 1 L of water. Adjust with phosphoric acid to a pH of 2.5.

Solution B: Acetonitrile**Mobile phase:** See [Table 1](#).**Table 1**

Time (min)	Solution A (%)	Solution B (%)
0	80	20
20	80	20
50	65	35
63	50	50
64	80	20
70	80	20

Diluent: Acetonitrile, phosphoric acid, and *Solution A* (500:15:500)**System suitability solution:** 0.2 mg/mL of [USP Irinotecan Hydrochloride RS](#) and 0.4 µg/mL of irinotecan related compound E in *Diluent*, added stepwise, if necessary. Sonication may be used to aid dissolution.**Sample solution:** 0.2 mg/mL of irinotecan hydrochloride in *Diluent* from *Injection***Chromatographic system**(See [Chromatography \(621\), System Suitability](#).)**Mode:** LC**Detector:** UV 254 nm**Column:** 4.6-mm × 25-cm; 5-µm packing L1**Flow rate:** 1 mL/min**Temperatures****Column:** 55°**Sample:** 15°**Injection volume:** 25 µL**System suitability****Sample:** System suitability solution**Suitability requirements****Resolution:** NLT 4.0 between irinotecan and irinotecan related compound E**Analysis****Sample:** Sample solution

Calculate the percentage of each impurity in the portion of Irinotecan Hydrochloride Injection taken:

$$\text{Result} = (r_u/r_T) \times (1/F) \times 100$$

 r_u = peak area of each impurity from the *Sample solution* r_T = sum of the peak areas from the *Sample solution*F = relative response factor for each individual impurity (see [Table 2](#))**Acceptance criteria:** See [Table 2](#).**Table 2**

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Irinotecan related compound B ^a	0.53	0.74	0.2
Camptothecin ^{b,d}	0.65	—	—
Irinotecan	1.00	—	—

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
7-Ethylcamptothecin ^{cd}	1.16	—	—
Any unspecified impurity	—	1.0	0.2
Total impurities	—	—	1.0

^a (S)-4,11-Diethyl-4,9-dihydroxy-1H-pyrano[3',4':6,7]indolizino[1,2-b]quinoline-3,14(4H,12H)-dione.

^b (S)-4-Ethyl-4-hydroxy-1H-pyrano[3',4':6,7]indolizino[1,2-b]quinoline-3,14(4H,12H)-dione. It is a process impurity and is controlled in the API monograph.

^c Irinotecan related compound E. It is a process impurity and is controlled in the API monograph.

^d These process impurities are included in the table for identification only and are not included in the *Total impurities*.

SPECIFIC TESTS

- **BACTERIAL ENDOTOXINS TEST (85):** NMT 0.83 USP Endotoxin Units/mg of irinotecan hydrochloride
- **STERILITY TESTS (71):** Meets the requirements when tested as directed for *Test for Sterility of the Product to Be Examined, Membrane Filtration*
- **pH (791):** 3.0–3.8
- **PARTICULATE MATTER IN INJECTIONS (788):** Meets the requirements for small-volume injections
- **OTHER REQUIREMENTS:** Meets the requirements under *Injections and Implanted Drug Products (1)*.

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in single-dose vials, protected from light. Store at controlled room temperature.
- **LABELING:** Label it to indicate that it is to be diluted with either 5% dextrose solution (USP) or 0.9% Sodium Chloride Injection (USP) prior to intravenous infusion.
- **USP REFERENCE STANDARDS (11):**
USP Irinotecan Hydrochloride RS
USP Irinotecan Related Compound E RS
(S)-4,11-Diethyl-4-hydroxy-1H-pyrano[3',4':6,7]indolizino[1,2-b]quinoline-3,14(4H,12H)-dione.
 $C_{22}H_{20}N_2O_4$ 376.41

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
IRINOTECAN HYDROCHLORIDE INJECTION	Documentary Standards Support	SM32020 Small Molecules 3

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 38(2)

Current DocID: GUID-D5E569FD-6848-4E35-A5A3-B492E5BC6B50_5_en-US

DOI: https://doi.org/10.31003/USPNF_M42489_05_01

DOI ref: [6ph6q](#)