

Status: Currently Official on 15-Feb-2025
 Official Date: Official as of 01-Dec-2021
 Document Type: USP Monographs
 DocId: GUID-B155CCA7-9A30-44D0-AB7E-B0DB58F87B39_7_en-US
 DOI: https://doi.org/10.31003/USPNF_M41920_07_01
 DOI Ref: aw3of

© 2025 USPC
 Do not distribute

Iohexol

$C_{19}H_{26}I_3N_3O_9$ 821.14

1,3-Benzenedicarboxamide, 5-[acetyl(2,3-dihydroxypropyl)amino]-N,N'-bis(2,3-dihydroxypropyl)-2,4,6-triiodo; N,N'-Bis(2,3-dihydroxypropyl)-5-[N-(2,3-dihydroxypropyl)acetamido]-2,4,6-triiodoisophthalamide CAS RN®: 66108-95-0; UNII: 4419T9MX03.

DEFINITION

Iohexol contains NLT 98.0% and NMT 102.0% of iohexol ($C_{19}H_{26}I_3N_3O_9$), calculated on the anhydrous basis.

IDENTIFICATION

- A. **SPECTROSCOPIC IDENTIFICATION TESTS (197), Infrared Spectroscopy:** 197K
- B. The retention times of the two principal peaks of the *Sample solution* correspond to those of the *System suitability solution*, as obtained in the test for *Organic Impurities*.

ASSAY

• PROCEDURE

Sample: 500 mg of iohexol

Sample solution: Transfer the *Sample* to a glass-stoppered, 125-mL conical flask. Add 25 mL of 1.25 N *sodium hydroxide* and 500 mg of powdered *zinc*. Connect the flask to a reflux condenser, and reflux for 1 h. Cool the flask to room temperature, rinse the condenser with 20 mL of *water*, disconnect the flask from the condenser, and pass the mixture through a filter. Rinse the flask and the filter thoroughly with small portions of *water*, adding the rinsings to the filtrate. Add 5 mL of *glacial acetic acid*.

Titrimetric system

(See *Titrimetry (541)*.)

Mode: Direct titration

Titrant: 0.1 N *silver nitrate* VS

Endpoint detection: Potentiometric

Analysis: Titrate the *Sample solution* with *Titrant*.

Calculate the percentage of iohexol ($C_{19}H_{26}I_3N_3O_9$) in the portion of iohexol taken:

$$\text{Result} = [(V \times N \times F)/W] \times 100$$

V = *Titrant* volume consumed by the *Sample* (mL)

N = *Titrant* normality (mEq/mL)

F = equivalent weight of iohexol, 273.7 mg/mEq

W = *Sample* weight (mg)

Acceptance criteria: 98.0%–102.0% on the anhydrous basis

IMPURITIES

• LIMIT OF IONIC COMPOUNDS

Rinse all glassware five times with distilled water.

Standard solution: 0.002 mg/mL of sodium chloride in [water](#)

Sample solution: 1 g of Iohexol in 50 mL of [water](#)

Analysis

Samples: Standard solution and Sample solution

Acceptance criteria: The specific conductance of the Sample solution is NMT that of the Standard solution (equivalent to 0.01% ionic compounds as sodium chloride).

Change to read:

- **LIMIT OF FREE IODIDE**

Sample: 5 g of Iohexol

Sample solution: Dissolve the Sample in 20 mL of [water](#).

Titrimetric system

(See [Titrimetry \(541\)](#).)

Mode: Direct titration

Titrant: 0.001 N [silver nitrate](#) ▲ (USP 1-Dec-2021)

Endpoint detection: Potentiometric

Analysis: Calculate the percentage of free iodide in the portion of Iohexol taken:

$$\text{Result} = [(V \times N \times F)/W] \times 100$$

V = Titrant volume consumed by the Sample (mL)

N = Titrant normality (mEq/mL)

F = equivalent weight of iodide, 126.9 mg/mEq

W = Sample weight (mg)

Acceptance criteria: NMT 0.001%

- **ORGANIC IMPURITIES**

Solution A: [Acetonitrile](#)

Solution B: [Water](#)

Mobile phase: See [Table 1](#).

Table 1

Time (min)	Solution A (%)	Solution B (%)
0	1	99
60	13	87

System suitability solution: 1.5 mg/mL of [USP Iohexol RS](#) and 0.0075 mg/mL of [USP Iohexol Related Compound A RS](#) in [water](#)

Sample solution: 1.5 mg/mL of Iohexol

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 254 nm

Column: 4.6-mm × 25-cm; 5-μm packing [L1](#)

Flow rate: 1 mL/min

Injection volume: 10 μL

System suitability

Sample: System suitability solution

[NOTE—Iohexol may give two nonresolved peaks due to exo–endo isomerism. In addition, a small peak due to iohexol usually appears at the leading edge of the first principal peak. This small peak has a retention time about 1.2 min less than the first principal peak. The relative retention times for the iohexol related compound A, iohexol endo-isomer, iohexol exo-isomer, and O-alkylated compounds peaks are 0.85, 0.96, 1.0, and 1.1–1.4, respectively.]

Suitability requirements

Resolution: NLT 5.0 between iohexol related compound A and the exo-isomer (the second and greater peak) of iohexol

Analysis

Sample: Sample solution

Calculate the percentage of O-alkylated compounds and any other individual impurity in the portion of iohexol taken. Exclude peaks with a relative retention time between 0.84 [relative to the endo-isomer of iohexol (first main peak)] and that of the endo-isomer of iohexol.

Disregard any peak less than or equal to 0.03% of the principal peaks.

$$\text{Result} = (r_U/r_T) \times 100$$

r_U = peak response of each impurity

r_T = sum of all of the peak responses

Acceptance criteria

O-alkylated compounds: NMT 0.6%

Any individual impurity: NMT 0.1%

Total impurities excluding O-alkylated compounds: NMT 0.3%

Change to read:

- **LIMIT OF 2-METHOXYETHANOL**

Internal standard solution: ▲10 µg/mL▲ (USP 1-Dec-2021) of secondary butyl alcohol in water

▲System suitability solution: 5 µg/mL of methanol and 10 µg/mL each of isopropyl alcohol and 2-methoxyethanol in *Internal standard solution*▲ (USP 1-Dec-2021)

Standard stock solution: ▲10 µg/mL of▲ (USP 1-Dec-2021) 2-methoxyethanol in *Internal standard solution*

Standard solution: Transfer about 0.25 g of USP Iohexol RS and 1.0 mL of *Standard stock solution* to a headspace vial, and seal the vial with a septum and crimp cap.

Sample solution: Transfer about 0.25 g of lohexol and 1.0 mL of *Internal standard solution* to a headspace vial, and seal the vial with a septum and crimp cap.

▲Blank solution: Transfer about 0.25 g of USP Iohexol RS and 1.0 mL of *Internal standard solution* to a headspace vial, and seal the vial with a septum and crimp cap.▲ (USP 1-Dec-2021)

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: GC with suitable headspace autosampler

Detector: Flame ionization

Column: 0.53-mm × 30-m fused-silica; coated with a 1-µm phase G16

Temperatures

Autosampler: 105°

Needle: 130°–140°

Injection port: 150°

Detector: 200°

Column: See Table 2.

Table 2

Initial Temperature (°)	Temperature Ramp (°/min)	Final Temperature (°)	Hold Time at Final Temperature (min)
40	—	40	3
40	8	100	1

Carrier gas: Helium

Flow rate: 11 mL/min

Injection volume: 1 mL of the headspace

System suitability

Sample: ▲System suitability solution▲ (USP 1-Dec-2021)

[NOTE—The typical relative retention times for methanol, isopropyl alcohol, secondary butyl alcohol, and 2-methoxyethanol are 0.5, 0.6, 1.0, and 1.9, respectively.]

Suitability requirements

Resolution: NLT 1.0 between methanol and isopropyl alcohol

Relative standard deviation: NMT 10.0% for the ratio of 2-methoxyethanol to ▲secondary butyl alcohol▲ (USP 1-Dec-2021)

Analysis

Samples: Standard solution, Sample solution, and ▲Blank solution▲ (USP 1-Dec-2021)

Calculate the amount of 2-methoxyethanol in the portion of Iohexol taken:

$$\text{Result} = [R_u/(R_s - R_b)] \times (C_s/C_u)$$

R_u = peak response ratio of 2-methoxyethanol to ▲secondary butyl alcohol▲ (USP 1-Dec-2021) from the Sample solution

R_s = peak response ratio of 2-methoxyethanol to ▲secondary butyl alcohol▲ (USP 1-Dec-2021) from the Standard solution

ΔR_b = peak response ratio of 2-methoxyethanol to secondary butyl alcohol from the Blank solution▲ (USP 1-Dec-2021)

C_s = concentration of 2-methoxyethanol in the Standard solution (μg/mL)

C_u = concentration of Iohexol in the Sample solution (g/mL)

Acceptance criteria: NMT 20 μg/g of 2-methoxyethanol

Change to read:

• **LIMIT OF 3-CHLOROPROPANE-1,2-DIOL**

Standard solution: 0.025 mg/mL of [3-chloropropane-1,2-diol](#) in [ethyl acetate](#)

Sample solution: Transfer 1 g of Iohexol to a separator. Dissolve in 1 mL of [water](#). Extract 4 times with 2 mL of ethyl acetate, and combine the extracts. Dry the combined extracts with [anhydrous sodium sulfate](#). Filter, and wash the filter with a small amount of ethyl acetate.

Combine the washings with the filtrate, and concentrate to a volume of 0.7 mL, using a warm water bath and a stream of nitrogen. Dilute with ethyl acetate to ▲1▲ (USP 1-Dec-2021) mL.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: GC

Detector: Flame ionization

Column: 0.32-mm × 30-m fused-silica capillary; bonded with a 1-μm layer of phase [G46](#)

Temperatures

Injection port: 230°

Detector: 250°

Column: See [Table 3](#).

Table 3

Initial Temperature (°)	Temperature Ramp (°/min)	Final Temperature (°)	Hold Time at Final Temperature (min)
80	—	80	2
80	15	275	—
275	—	275	2

Carrier gas: Helium

Flow rate: 1 mL/min

Injection volume: 2 μL

System suitability

Sample: Standard solution

[NOTE—The retention time of the 3-chloropropane-1,2-diol peak is about 8 min.]

Suitability requirements

Relative standard deviation: NMT 10.0%

Analysis

Samples: Standard solution and Sample solution

Acceptance criteria: The area of the principal peak from the *Sample solution* is NMT the area of the principal peak from the *Standard solution* (NMT 0.0025%).

- **LIMIT OF FREE AROMATIC AMINE**

Solution A: 3 mg/mL of [N-\(1-naphthyl\)ethylenediamine dihydrochloride](#) in a mixture of [propylene glycol](#) and [water](#) (70:30)

Standard stock solution: 10 µg/mL of [USP Iohexol Related Compound B RS](#) in [water](#)

Standard solution: Transfer 5 mL of [water](#) and 10.0 mL of the *Standard stock solution* to a 25-mL volumetric flask.

Sample solution: Transfer 200 mg of Iohexol to a 25-mL volumetric flask, add 15 mL of [water](#), and mix to dissolve.

Blank: Add 15 mL of [water](#) to a 25-mL volumetric flask.

Instrumental conditions

Mode: Vis

Analytical wavelength: 495 nm

Cell: 5 cm

Analysis

Samples: Standard solution, Sample solution, and Blank

In conducting the following steps, keep the flasks in iced water and protected as much as possible from light until all of the reagents have been added.

Treat the *Samples* as follows. Place the flask in an ice bath for 5 min. Add 1.5 mL of 6 N hydrochloric acid, and mix by swirling. Add 1.0 mL of sodium nitrite solution (20 mg/mL), and allow to stand in the ice bath for 4 min. Remove the flask from the ice bath, add 1.0 mL of sulfamic acid solution (40 mg/mL), and swirl gently until gas evolution ceases. [CAUTION—Considerable pressure is produced.] Add 1.0 mL of *Solution A*, dilute with water to volume, and allow to stand for 5 min. Measure the absorbance of the *Standard solution* and *Sample solution* against the *Blank*.

Acceptance criteria: The absorbance of the *Sample solution* is NMT that of the *Standard solution* (NMT 0.05% of free aromatic amine).

SPECIFIC TESTS

- **COLOR OF SOLUTION**

Sample solution: 647.2 mg/mL

Blank: [Water](#)

Instrumental conditions

Mode: UV-Vis

Analytical wavelengths: 400, 420, and 450 nm

Cell: 1 cm

Analysis

Samples: Sample solution and Blank

Pass the *Sample solution* through a filter of 0.22-µm pore size.

Determine the absorbances of the *Sample solution* against the *Blank*.

Acceptance criteria: See [Table 4](#).

Table 4

Wavelength (nm)	NMT (AU)
400	0.180
420	0.030
450	0.015

- **WATER DETERMINATION (921), Method I:** NMT 4.0%

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in well-closed, light-resistant containers. Store at room temperature.

- **USP REFERENCE STANDARDS (11).**

[USP Iohexol RS](#)

[USP Iohexol Related Compound A RS](#)

5-(Acetylamino)-N,N'-bis(2,3-dihydroxypropyl)-2,4,6-triiodo-1,3-benzenedicarboxamide.

C16H20I3N3O7 747.06

[USP Iohexol Related Compound B RS](#)

5-Amino-N,N'-bis(2,3-dihydroxypropyl)-2,4,6-triiodo-1,3-benzenedicarboxamide.

C14H18I3N3O6 705.02

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
IOHEXOL	Documentary Standards Support	SM42020 Small Molecules 4

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. 46(4)

Current DocID: GUID-B155CCA7-9A30-44D0-AB7E-B0DB58F87B39_7_en-US

DOI: https://doi.org/10.31003/USPNF_M41920_07_01

DOI ref: [aw3of](#)