

Status: Currently Official on 15-Feb-2025
 Official Date: Official as of 01-May-2019
 Document Type: USP Monographs
 DocId: BDC7D5E6-856E-4B9E-9C33-FCF20D01E040_6_en-US
 DOI: https://doi.org/10.31003/USPNF_M40520_06_01
 DOI Ref: 0hdf0

© 2025 USPC
 Do not distribute

Insulin

To view the Notice from the Expert Committee that posted in conjunction with this accelerated revision, please click

<https://www.uspnf.com/rb-insulin-20190401>

Change to read:

$C_{256}H_{381}N_{65}O_{76}S_6$ 5777.54

Insulin (pig) CAS RN®: 12584-58-6.

▲ (RB 1-May-2019)

DEFINITION

Change to read:

▲ Insulin is a two-chain peptide hormone consisting of 51 amino acids, and its structure corresponds to native insulin produced in vivo by the beta cells of the pancreas. The A-chain is composed of 21 amino acids, and the B-chain is composed of 30 amino acids.▲ (RB 1-May-2019) It is obtained from the pancreas of healthy ▲ (RB 1-May-2019) porcine animals, ▲ (RB 1-May-2019) used for food by humans. Its potency is NLT 26.5 USP Insulin Units/mg, calculated on the dried basis; Insulin labeled as purified contains NLT 27.0 USP Insulin Units/mg, calculated on the dried basis. ▲ (USP 1-May-2019)

[NOTE—1 USP Insulin Unit is equivalent to ▲ (RB 1-May-2019) 0.0345 mg of pure Insulin derived from pork.]

IDENTIFICATION

Change to read:

• A. The retention time of the major peak in the *Sample solution* corresponds to that ▲ (RB 1-May-2019) of the *Identification solution*, as obtained in the *Assay*▲ and no other significant peaks are observed.▲ (RB 1-May-2019)

[NOTE—It may be necessary to inject a mixture of *Sample solution* and *Identification solution*.]

Delete the following:

▲ B. PEPTIDE MAPPING

Sulfate buffer: 2.0 M ammonium sulfate and 0.5 M sulfuric acid (1:1)

Enzyme solution: 500 units/mL of *Staphylococcus aureus* V-8 protease activity in water

HEPES buffer: 0.1 M HEPES (*N*-2-hydroxyethylpiperazine-*N'*-2-ethanesulfonic acid). Adjust with 5 M sodium hydroxide to a pH of 7.5 before diluting with water to a final volume.

Solution A: Acetonitrile, water, and *Sulfate buffer* (100:700:200)

Solution B: Acetonitrile, water, and *Sulfate buffer* (400:400:200)

Mobile phase: See [Table 1](#).

Table 1

Time (min)	Solution A (%)	Solution B (%)
0	90	10

Time (min)	Solution A (%)	Solution B (%)
60	30	70
65	0	100
70	0	100
71	90	10
86	90	10

Standard digest solution: 2 mg/mL of [USP Insulin RS](#) of the appropriate species in 0.01 N hydrochloric acid. Transfer 500 μ L of the resulting solution to a clean vial. Add 2.0 mL of *HEPES buffer* and 400 μ L of *Enzyme solution*, and incubate at 25° for 6 h. Quench the digestion by adding 2.9 mL of *Sulfate buffer*.

Sample digest solution: 2 mg/mL of Insulin in 0.01 N hydrochloric acid, mix to dissolve. Transfer 500 μ L of the resulting solution to a clean vial. Add 2.0 mL of *HEPES buffer* and 400 μ L of *Enzyme solution*, and incubate at 25° for 6 h. Quench the digestion by adding 2.9 mL of *Sulfate buffer*.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 214 nm

Column: 4.6-mm \times 10-cm; packing L1

Column temperature: 40°

Flow rate: 1 mL/min

System suitability

Sample: Standard digest solution

Suitability requirements

Chromatogram comparability: The chromatogram of the *Standard digest solution* corresponds to that of the reference chromatogram provided with [USP Insulin RS](#) of the appropriate species.

Resolution: NLT 1.9 between digest fragments II and III.

[*Note*—Fragment I elutes at the same time in insulin derived from pork and Insulin Human; Fragment II elutes at the same time in Insulin Human and insulin derived from beef and pork; and Fragment III elutes at the same time in insulin derived from beef and pork.]

Tailing factor: NMT 1.5

Analysis

Samples: Standard digest solution and Sample digest solution

Using the gradient program, run a blank. Separately inject equal volumes of the *Standard digest solution* and the *Sample digest solution*, and record the responses of each peak.

Acceptance criteria: The chromatographic profile of the *Sample digest solution* corresponds to that of the *Standard digest solution*.▲ (USP 1-May-2019)

Add the following:

▲• B. [PHYSICOCHEMICAL ANALYTICAL PROCEDURES FOR INSULINS \(121.1\), Peptide Mapping](#): Proceed as directed in the chapter, except for the *Mobile phase* and *System suitability*.

Mobile phase: See [Table 1](#).

Table 1

Time (min)	Solution A (%)	Solution B (%)
0	90	10
60	30	70
65	0	100

Time (min)	Solution A (%)	Solution B (%)
70	0	100
71	90	10
86	90	10

System suitability

Sample: Standard solution

Suitability requirements

Resolution: NLT 1.9 between digest fragments II and III

[NOTE—Fragment I elutes at the same time in insulin derived from pork and Insulin Human; Fragment II elutes at the same time in Insulin Human and insulin derived from beef and pork; and Fragment III elutes at the same time in insulin derived from beef and pork.]

Tailing factor: NMT 1.5 for digest fragments II and III

Chromatogram similarity: The chromatogram of the *Standard solution* corresponds to that of the reference chromatogram provided with [USP Insulin Pork RS](#).

Acceptance criteria: Meets the requirements▲ (USP 1-May-2019)

Add the following:

▲• C. [INSULIN ASSAYS \(121\), Assay, Bioidentity Test](#): Meets the requirements▲ (USP 1-May-2019)

ASSAY

Change to read:

- **PROCEDURE**

Solution A: Dissolve 28.4 g of [anhydrous sodium sulfate](#) in 1000 mL of [water](#). Pipet 2.7 mL of [phosphoric acid](#) into the solution, and adjust with [ethanolamine](#) to a pH of 2.3, if necessary.

Mobile phase: Acetonitrile and *Solution A* (26:74). [NOTE—The acetonitrile is warmed to a temperature of NLT 20° to avoid precipitation.]

System suitability solution: 1.5 mg/mL of Insulin in [0.01 N hydrochloric acid](#). Allow to stand at room temperature for NLT 3 days to obtain a solution containing NLT 5% of A-21 desamido insulin.

[NOTE—The *Identification solution*, *Standard solution*, and *Sample solution* may be stored at room temperature for up to 12 h or in a refrigerator for up to 48 h.]

Identification solution: 0.6 mg/mL of [USP Insulin Pork RS](#)▲ (RB 1-May-2019) in [0.01 N hydrochloric acid](#)

Standard solution: 1.5 mg/mL of ▲[USP Insulin Pork RS](#)▲ (RB 1-May-2019) in [0.01 N hydrochloric acid](#)▲ (RB 1-May-2019)

Sample solution: 1.5 mg/mL of Insulin in [0.01 N hydrochloric acid](#)

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 214 nm

Column: 4.6-mm × 15-cm; packing [L1](#)

Column temperature: 40°

Flow rate: 1 mL/min

Injection volume: 20 µL

System suitability

Samples: System suitability solution and Standard solution

Suitability requirements

Resolution: NLT 2.0 between insulin and A-21 desamido insulin, System suitability solution

Tailing factor: NMT 1.8 for the insulin peak, System suitability solution

Relative standard deviation: NMT 1.6%, Standard solution

Analysis

Samples: Identification solution, Standard solution, and Sample solution

Measure the peak responses for insulin and A-21 desamido insulin, using the chromatogram of the *Identification solution* to identify the insulin peaks.

▲ (RB 1-May-2019) Calculate the potency on the undried basis, in USP Insulin Units/mg, of Insulin in the *Sample solution*:

$$\text{Result} = (\Sigma r_u / \Sigma r_s) \times (C_s / C_u)$$

r_u = sum of the peak responses of insulin and A-21 desamido insulin from the *Sample solution*

r_s = sum of the peak responses of insulin and A-21 desamido insulin from the *Standard solution*

C_s = concentration of Δ (RB 1-May-2019) [USP Insulin Pork RS](#) in the *Standard solution* (USP Insulin Units/mL)

C_u = concentration of Insulin in the *Sample solution* (mg/mL)

Δ (RB 1-May-2019)

Acceptance criteria: NLT 26.5 USP Insulin Units/mg on the dried basis; Insulin labeled as purified contains NLT 27.0 USP Insulin Units/mg on the dried basis.

OTHER COMPONENTS

Change to read:

- [ZINC DETERMINATION \(591\)](#)

Δ **Acceptance criteria:** NMT 1.0% on the dried basis Δ (USP 1-May-2019)

PRODUCT-RELATED SUBSTANCES AND IMPURITIES

Change to read:

- Δ **PRODUCT-RELATED SUBSTANCES** Δ (USP 1-May-2019)

Solution A: Dissolve 28.4 g of [anhydrous sodium sulfate](#) in 1000 mL of [water](#). Pipet 2.7 mL of [phosphoric acid](#) into the solution, and adjust with [ethanolamine](#) to a pH of 2.3, if necessary.

Solution B: Acetonitrile and **Solution A** (18:82)

Solution C: Acetonitrile and **Solution A** (50:50)

Mobile phase: See [Table 2](#).

Table 2

Time (min)	Solution B (%)	Solution C (%)
0	81	19
60	81	19
85	36	64
91	36	64
92	81	19

System suitability solution: 1.5 mg/mL of Insulin in [0.01 N hydrochloric acid](#). Allow to stand at room temperature for NLT 3 days to obtain a solution containing NLT 5% of A-21 desamido insulin.

[NOTE—*Standard solutions A–C* may be stored at room temperature for up to 12 h and in a refrigerator for up to 48 h.]

Standard solution A: 3.75 mg/mL of Δ [USP Insulin Pork RS](#) Δ (RB 1-May-2019) in [0.01 N hydrochloric acid](#) Δ (RB 1-May-2019)

Standard solution B: 0.375 mg/mL of Δ (RB 1-May-2019) [USP Insulin Pork RS](#) in [0.01 N hydrochloric acid](#) prepared as follows. Pipet 1 mL of **Standard solution A** into a 10-mL volumetric flask, dilute with [0.01 N hydrochloric acid](#) to volume, and mix.

Standard solution C: 0.0375 mg/mL of Δ (RB 1-May-2019) [USP Insulin Pork RS](#) in [0.01 N hydrochloric acid](#) prepared as follows. Pipet 1 mL of **Standard solution B** into a 10-mL volumetric flask, dilute with [0.01 N hydrochloric acid](#) to volume, and mix.

Sample solution: 3.75 mg/mL of Insulin in [0.01 N hydrochloric acid](#). Prepare the solution in a capped vial, cap the vial, and shake gently to dissolve. Store the solution for NMT 2 h at room temperature or for NMT 12 h in a refrigerator.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 214 nm

Column: 4.6-mm × 25-cm; packing [L1](#)**Column temperature:** 40°**Flow rate:** 1 mL/min**Injection volume:** 20 µL**System suitability****Samples:** System suitability solution, Standard solution A, Standard solution B, and Standard solution C

[NOTE—Adjust the Mobile phase composition and the duration of the isocratic elution to obtain a retention time of about 31 min for insulin, with the A-21 desamido insulin eluting just prior to the start of the gradient elution phase.]

Suitability requirements for the System suitability solution**Resolution:** NLT 2.0 between insulin and A-21 desamido insulin**Tailing factor:** NMT 1.8 for the insulin peak**Suitability requirements for the Standard solutions**Calculate the factor X_1 :

$$X_1 = (r_B/r_A) \times D$$

 r_B = peak response from Standard solution B r_A = peak response from Standard solution A D = dilution factor, 10**Result:** Between 0.91 and 1.09Calculate the factor X_2 :

$$X_2 = (r_C/r_A) \times D$$

 r_C = peak response from Standard solution C r_A = peak response from Standard solution A D = dilution factor, 100**Result:** Between 0.7 and 1.3**Analysis****Sample:** Sample solutionCalculate the percentage of insulin, A-21 desamido insulin, and other Δ insulin-related substances Δ (USP 1-May-2019) in the portion of

Insulin taken:

Calculate the percentage of Insulin (%):

$$\text{Result} = (r_I/r_T) \times 100$$

 r_I = peak response of insulin from the Sample solution r_T = sum of the responses of all the peaks from the Sample solution

Calculate the percentage of A-21 desamido insulin (%D):

$$\text{Result} = (r_D/r_T) \times 100$$

 r_D = peak response of A-21 desamido insulin from the Sample solution r_T = sum of the responses of all the peaks from the Sample solutionCalculate the percentage of other insulin-related Δ substances: Δ (USP 1-May-2019)

$$\text{Result} = 100 - (\%I + \%D)$$

Acceptance criteria: NMT 10.0% of A-21 desamido insulin, and NMT 5.0% of other insulin-related Δ substances Δ (USP 1-May-2019) Δ (RB 1-May-2019)

Change to read:

- ▲ [PHYSICOCHEMICAL ANALYTICAL PROCEDURES FOR INSULINS \(121.1\), Limit of High Molecular Weight Proteins](#): Meets the requirements▲ (USP 1-May-2019)

Acceptance criteria: NMT 1.0%**PROCESS-RELATED IMPURITIES****Add the following:**

- ▲ **PROINSULIN CONTENT:** NMT 10 ng/mg, determined by a validated method▲ (USP 1-May-2019)

SPECIFIC TESTS**Delete the following:**

- ▲ [INSULIN ASSAYS \(121\), Assay, Bioidentity Test](#): Meets the requirements▲ (USP 1-May-2019)

- [LOSS ON DRYING \(731\)](#):

Sample: 200 mg**Analysis:** Dry the Sample at 105° for 16 h.**Acceptance criteria:** NMT 10.0%**Delete the following:**

- ▲ [ZINC DETERMINATION \(591\), Procedure, Dithizone Method](#)

Sample: 10 mg**Acceptance criteria:** NMT 1.0% on the dried basis▲ (USP 1-May-2019)

- [BACTERIAL ENDOTOXINS TEST \(85\)](#): NMT 10 USP Endotoxin Units/mg of insulin

- [MICROBIAL ENUMERATION TESTS \(61\)](#) and [TESTS FOR SPECIFIED MICROORGANISMS \(62\)](#): The total bacterial count does not exceed 3×10^2 cfu/g, the test being performed on a portion of about 0.2 g, accurately weighed.

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in tight containers. Store, protected from light, in a freezer.

Change to read:

- **LABELING:** Label it ▲ (RB 1-May-2019) as pork ▲ (RB 1-May-2019). If the Insulin is purified, label it as such.

Change to read:

- [USP REFERENCE STANDARDS \(11\)](#):

▲ (RB 1-May-2019)

[USP Insulin Pork RS](#)**Auxiliary Information** - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
INSULIN	Jennifer Tong Sun Senior Scientist II	BIO2 Biologics Monographs 2 - Proteins

Chromatographic Database Information: [Chromatographic Database](#)**Most Recently Appeared In:**

Pharmacopeial Forum: Volume No. PF 44(4)

Current DocID: GUID-BDC7D5E6-856E-4B9E-9C33-FCF20D01E040_6_en-US**DOI:** https://doi.org/10.31003/USPNF_M40520_06_01**DOI ref:** 0hdf0