

Status: Currently Official on 15-Feb-2025
Official Date: Official as of 01-Dec-2022
Document Type: USP Monographs
DocId: GUID-35FAF344-22CE-49ED-9CA2-22552BA60082_4_en-US
DOI: https://doi.org/10.31003/USPNF_M40555_04_01
DOI Ref: t09nk

© 2025 USPC
Do not distribute

Insulin Glargine Injection

DEFINITION

Insulin Glargine Injection is a sterile solution of Insulin Glargine in Water for Injection. It has a potency of NLT 95.0 and NMT 105.0 USP Insulin Glargine Units/mL.

IDENTIFICATION

- **A.** The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solutions*, as obtained in the *Assay*.

ASSAY

• PROCEDURE

Buffer: Dissolve 20.7 g of anhydrous monobasic sodium phosphate in 900 mL of water. Adjust with phosphoric acid to a pH of 2.5, and dilute with water to a final volume of 1000 mL.

Solution A: Dissolve 18.4 g of sodium chloride in 250 mL of *Buffer*, add 250 mL of acetonitrile, and mix. Dilute the solution with water to a final volume of 1000 mL.

Solution B: Dissolve 3.2 g of sodium chloride in 250 mL of *Buffer*, add 650 mL of acetonitrile, and mix. Dilute the solution with water to a final volume of 1000 mL.

Mobile phase: See [Table 1](#).

Table 1

Time (min)	Solution A (%)	Solution B (%)
0	96	4
20	83	17
30	63	37
40	96	4

[NOTE—Adjust the *Mobile phase* composition and the gradient by a parallel shift to obtain a retention time of 18–23 min for the insulin glargine main peak.]

System suitability solution: Dissolve the contents of 1 vial of [USP Insulin Glargine for Peak Identification RS](#) in 0.3 mL of 0.01 N hydrochloric acid, and add 1.7 mL of water.

Standard solution 1: Dissolve the contents of 1 vial of [USP Insulin Glargine RS](#) in 1.5 mL of 0.01 N hydrochloric acid, transfer the solution to a 5-mL volumetric flask, and dilute with water to volume. Dilute 4 mL of this solution with water to 10 mL in a volumetric flask.

Standard solution 2: Dissolve the contents of 1 vial of [USP Insulin Glargine RS](#) in 1.5 mL of 0.01 N hydrochloric acid, transfer the solution to a 10-mL volumetric flask, and dilute with water to volume.

Standard solution 3: Dissolve the contents of 1 vial of [USP Insulin Glargine RS](#) in 1.5 mL of 0.01 N hydrochloric acid, transfer the solution to a 5-mL volumetric flask, and dilute with water to volume. Dilute 3 mL of this solution with water to 5 mL in a volumetric flask.

Sample solution: Quantitatively dilute a portion of *Injection* with water to obtain a solution containing about 40 USP Insulin Glargine Units/mL.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 214 nm

Column: 3.0-mm × 25.0-cm; 4-μm packing [L1](#)

Column temperature: 35°**Flow rate:** 0.55 mL/min**Injection volume:** 5 µL**System suitability****Samples:** System suitability solution, Standard solution 1, Standard solution 2, and Standard solution 3**Suitability requirements****Resolution:** NLT 2.0 for the ratio of the height of the 0^A-Arg-insulin glargine peak to the height of the valley between the 0^A-Arg-insulin glargine peak and the insulin glargine peak, *System suitability solution***Tailing factor:** NMT 1.8 for the insulin glargine peak, *System suitability solution***Relative standard deviation:** NMT 2.0%, calculated from six response factors from two duplicate injections each of *Standard solution 1*, *Standard solution 2*, and *Standard solution 3***Analysis****Samples:** Standard solutions and Sample solutionMeasure the responses of the major peaks. Prepare a calibration curve based on the peak responses from the *Standard solutions* versus the concentrations (USP Insulin Glargine Units/mL) using linear regression.

Calculate the potency, in USP Insulin Glargine Units/mL, of the portion of Injection taken:

$$\text{Result} = [(r_u - b)/a] \times D$$

 r_u = peak response of insulin glargine from the *Sample solution* b = y-intercept of the calibration curve a = slope of the calibration curve D = dilution factor used to prepare the *Sample solution***Acceptance criteria:** 95.0–105.0 USP Insulin Glargine Units/mL**OTHER COMPONENTS****• ZINC DETERMINATION****Blank:** 0.01 N hydrochloric acid**Standard stock solution:** 10 µg/mL of zinc in *Blank*, from a commercially available zinc standard solution for atomic absorption**Standard solutions:** 0.2, 0.4, and 0.6 µg/mL of zinc from the *Standard stock solution* diluted with *Blank***Sample solution:** Dilute 1 mL of Injection with *Blank* to 100 mL.**Instrumental conditions**(See [Atomic Absorption Spectroscopy \(852\)](#).)**Mode:** Atomic absorption spectrophotometry**Analytical wavelength:** Zinc absorption line at 213.9 nm**Flame:** Air–acetylene flame of suitable composition (for example, 11 L of air and 2 L of acetylene per min)**Lamp:** Suitable radiation source, such as zinc hollow-cathode or electrodeless-discharge-lamp (EDL)**System suitability****Samples:** *Blank* and *Standard solutions*Using the *Standard solutions* and *Blank*, construct a calibration curve by plotting the absorbances of the *Standard solutions* versus their concentrations, and draw the straight line best fitting the three plotted points.**Suitability requirements****Correlation coefficient:** NLT 0.999**Analysis****Samples:** *Blank*, *Standard solutions*, and *Sample solution*Determine the concentration, C , in µg/mL of zinc in the *Sample solution* using the calibration curve.

Calculate the quantity of zinc in the portion of Injection taken:

$$\text{Result} = C \times D$$

 C = concentration of zinc in the *Sample solution* (µg/mL) D = dilution factor, 100**Acceptance criteria:** 20–40 µg/mL

PRODUCT-RELATED SUBSTANCES AND IMPURITIES**• PRODUCT-RELATED SUBSTANCES**

Mobile phase, System suitability solution, Standard solutions, Sample solution, Chromatographic system, and System suitability: Proceed as directed in the Assay.

Analysis**Sample: Sample solution**

Calculate the percentage of each individual insulin glargine related substance ($\%i_x$) in the portion of Injection taken:

$$\text{Result} = (r_i/r_T) \times 100$$

r_i = peak response of the insulin glargine related substance from the *Sample solution*

r_T = sum of all the peak responses from the *Sample solution*

Calculate the total percentage of insulin glargine related substances in the portion of Injection taken:

$$\text{Result} = \Sigma \%i_x$$

$\Sigma \%i_x$ = total percentage of insulin glargine related substances from the *Sample solution*

Acceptance criteria

Any individual insulin glargine related substance: NMT 0.5%

Total insulin glargine related substances: NMT 2.0%

Delete the following:**▲• LIMIT OF HIGH MOLECULAR WEIGHT PROTEINS▲ (USP 1-DEC-2022)****Add the following:****▲• [PHYSICOCHEMICAL ANALYTICAL PROCEDURES FOR INSULINS \(121.1\), Limit of High Molecular Weight Proteins](#): Meets the requirements**

Acceptance criteria: NMT 0.5%▲ (USP 1-Dec-2022)

SPECIFIC TESTS**• [pH \(791\)](#): 3.5–4.5****Change to read:****• [BACTERIAL ENDOTOXINS TEST \(85\)](#): ▲Meets the requirements▲ (USP 1-Dec-2022)****• [STERILITY TESTS \(71\), Test for Sterility of the Product to Be Examined, Membrane Filtration](#): Meets the requirements****• [PARTICULATE MATTER IN INJECTIONS \(788\)](#): Meets the requirements for small-volume injections****• [INJECTIONS AND IMPLANTED DRUG PRODUCTS \(1\)](#): Meets the requirements****ADDITIONAL REQUIREMENTS**

• PACKAGING AND STORAGE: Preserve in the unopened multiple-dose container provided by the manufacturer. Do not repackage. Store in a refrigerator, protected from sunlight, and avoid freezing.

• LABELING: States that it has been prepared with Insulin Glargine produced by methods based on recombinant DNA technology. Label it to state that it is to be stored in a refrigerator and that freezing is to be avoided. The label states the potency in USP Insulin Glargine Units/mL.

• [USP REFERENCE STANDARDS \(11\)](#)

[USP Insulin Glargine RS](#)

[USP Insulin Glargine for Peak Identification RS](#)

Contains insulin glargine and D^Arg -insulin glargine.

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
INSULIN GLARGINE INJECTION	Jennifer Tong Sun Senior Scientist II	BIO2 Biologics Monographs 2 - Proteins

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. 46(5)

Current DocID: **GUID-35FAF344-22CE-49ED-9CA2-22552BA60082_4_en-US**

DOI: https://doi.org/10.31003/USPNF_M40555_04_01

DOI ref: [t09nk](#)

OFFICIAL