

Status: Currently Official on 14-Feb-2025
Official Date: Official as of 01-May-2022
Document Type: USP Monographs
DocId: GUID-75440BE6-2C8E-48EC-98EF-600D71D6EB97_6_en-US
DOI: https://doi.org/10.31003/USPNF_M39460_06_01
DOI Ref: 9f04r

© 2025 USPC
Do not distribute

Hydroxyzine Hydrochloride

Ethanol, 2-[2-[4-[(4-chlorophenyl)phenylmethyl]-1-piperazinyl]ethoxy]-, dihydrochloride, (\pm)-;
(\pm)-2-[2-[4-(*p*-Chloro- α -phenylbenzyl)-1-piperazinyl]ethoxy]ethanol dihydrochloride CAS RN[®]: 2192-20-3; UNII: 76755771U3.

DEFINITION

Hydroxyzine Hydrochloride contains NLT 98.0% and NMT 102.0% of hydroxyzine hydrochloride ($C_{21}H_{27}ClN_2O_2 \cdot 2HCl$), calculated on the anhydrous basis.

IDENTIFICATION

- A. [SPECTROSCOPIC IDENTIFICATION TESTS \(197\), Infrared Spectroscopy](#): 197A or 197K
- B. The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.

Change to read:

- C.
Sample solution: 2.5 mg/mL of Hydroxyzine Hydrochloride in [water](#)

Analysis: To 10 mL of the *Sample solution*, add 2 drops of [nitric acid](#) and 1 mL of [silver nitrate TS](#).

Acceptance criteria: A curdy, white precipitate, insoluble in [2 N nitric acid ▲TS](#) (USP 1-May-2022) but soluble in [6 N ammonium hydroxide](#), separates (presence of chloride).

ASSAY

• PROCEDURE

Solution A: [Trifluoroacetic acid](#) and [water](#) (0.1: 99.9)

Solution B: [Trifluoroacetic acid](#) and [acetonitrile](#) (0.05: 99.95)

Mobile phase: See [Table 1](#).

Table 1

Time (min)	Solution A (%)	Solution B (%)
0	90	10
4	90	10
12	55	45
16	55	45
21	20	80
25	20	80
26	90	10
30	90	10

Diluent: [Acetonitrile](#) and [water](#) (30:70)

Standard solution: 0.05 mg/mL of [USP Hydroxyzine Hydrochloride RS](#) in *Diluent*

Sample solution: 0.05 mg/mL of Hydroxyzine Hydrochloride in *Diluent*

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 230 nm

Column: 2.1-mm × 15-cm; 1.8-μm packing [L1](#)

Flow rate: 0.3 mL/min

Injection volume: 2 μL

System suitability

Sample: Standard solution

Suitability requirements

Tailing factor: NMT 2.0

Relative standard deviation: NMT 0.73%

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of hydroxyzine hydrochloride ($C_{21}H_{27}ClN_2O_2 \cdot 2HCl$) in the portion of Hydroxyzine Hydrochloride taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_u = peak response of hydroxyzine from the Sample solution

r_s = peak response of hydroxyzine from the Standard solution

C_s = concentration of [USP Hydroxyzine Hydrochloride RS](#) in the Standard solution (mg/mL)

C_u = concentration of Hydroxyzine Hydrochloride in the Sample solution (mg/mL)

Acceptance criteria: 98.0%–102.0% on the anhydrous basis

IMPURITIES

- [Residue on Ignition \(281\)](#): NMT 0.5%

Change to read:

- **ORGANIC IMPURITIES**

Solution A, Solution B, Mobile phase, and Diluent: Prepare as directed in the Assay.

Standard solution: 1.5 μg/mL each of [USP Hydroxyzine Hydrochloride RS](#), [USP Hydroxyzine Related Compound A RS](#), and [USP 4-Chlorobenzophenone RS](#) in *Diluent*

Sample solution: 500 μg/mL of Hydroxyzine Hydrochloride in *Diluent*

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detectors

Decloxitine, hydroxyzine related compound A, and hydroxyzine: UV 230 nm

4-Chlorobenzophenone: UV 254 nm

Column: 2.1-mm × 15-cm; 1.8-μm packing [L1](#)

Flow rate: 0.3 mL/min

Injection volume: 2 μL

System suitability

Sample: Standard solution

[NOTE—See [Table 2](#) for the relative retention times.]

Suitability requirements

Resolution: NLT 5.0 between hydroxyzine related compound A and hydroxyzine

Relative standard deviation: NMT 3.0% for hydroxyzine related compound A, hydroxyzine, and 4-chlorobenzophenone

Analysis

Samples: Standard solution and Sample solution

For impurities detected at UV 230 nm

Calculate the percentage of hydroxyzine related compound A in the portion of Hydroxyzine Hydrochloride taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_u = peak response of hydroxyzine related compound A from the Sample solution

r_s = peak response of hydroxyzine related compound A from the Standard solution

C_s = concentration of [USP Hydroxyzine Related Compound A RS](#) in the *Standard solution* ($\mu\text{g/mL}$) C_u = concentration of Hydroxyzine Hydrochloride in the *Sample solution* ($\mu\text{g/mL}$)

Calculate the percentage of decloxitine or any individual unspecified impurity in the portion of Hydroxyzine Hydrochloride taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times (1/F) \times 100$$

 r_u = peak response of decloxitine or any other individual impurity from the *Sample solution* r_s = peak response of hydroxyzine from the *Standard solution* C_s = concentration of [USP Hydroxyzine Hydrochloride RS](#) in the *Standard solution* ($\mu\text{g/mL}$) C_u = concentration of Hydroxyzine Hydrochloride in the *Sample solution* ($\mu\text{g/mL}$) F = relative response factor (see [Table 2](#))**For 4-chlorobenzophenone detected at UV 254 nm**

Calculate the percentage of 4-chlorobenzophenone in the portion of Hydroxyzine Hydrochloride taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

 r_u = peak response of 4-chlorobenzophenone from the *Sample solution* r_s = peak response of 4-chlorobenzophenone from the *Standard solution* C_s = concentration of [USP 4-Chlorobenzophenone RS](#) in the *Standard solution* ($\mu\text{g/mL}$) C_u = concentration of Hydroxyzine Hydrochloride in the *Sample solution* ($\mu\text{g/mL}$)**Acceptance criteria:** See [Table 2](#). ▲The reporting threshold is 0.05%. ▲ (USP 1-May-2022)**Table 2**

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Decloxitine ^a	0.87	0.68	0.3
Hydroxyzine related compound A	0.96	—	0.3
Hydroxyzine	1.0	—	—
4-Chlorobenzophenone	1.4	—	0.2
Any individual unspecified impurity	—	1.0	0.2
Total impurities	—	—	0.75

^a 2-[2-(4-Benzhydrylpiperazin-1-yl)ethoxy]ethanol; also known as 2-{2-[4-(diphenylmethyl)piperazin-1-yl]ethoxy}ethanol.**SPECIFIC TESTS****Change to read:**

- [WATER DETERMINATION \(921\)](#), ▲[Method I](#): ▲ (USP 1-MAY-2022) NMT 5.0%

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in tight containers. Store at controlled room temperature. Protect from light.

- [USP REFERENCE STANDARDS \(11\)](#).

[USP 4-Chlorobenzophenone RS](#)

4-Chlorobenzophenone.

 $C_{13}H_9ClO$ 216.66[USP Hydroxyzine Hydrochloride RS](#)[USP Hydroxyzine Related Compound A RS](#)

1-[(4-Chlorophenyl)phenylmethyl]piperazine;

Also known as *p*-Chlorobenzhydrylpiperazine.

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
HYDROXYZINE HYDROCHLORIDE	Documentary Standards Support	SM42020 Small Molecules 4

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. 46(6)

Current DocID: GUID-75440BE6-2C8E-48EC-98EF-600D71D6EB97_6_en-US

DOI: https://doi.org/10.31003/USPNF_M39460_06_01

DOI ref: 9f04r

OFFICIAL