

Status: Currently Official on 14-Feb-2025
 Official Date: Official as of 01-Dec-2017
 Document Type: USP Monographs
 DocId: GUID-0F70AED9-0C10-4A00-9C20-AC1ADAEE434A_4_en-US
 DOI: https://doi.org/10.31003/USPNF_M39480_04_01
 DOI Ref: c609b

© 2025 USPC
 Do not distribute

Hydroxyzine Hydrochloride Oral Solution

DEFINITION

Hydroxyzine Hydrochloride Oral Solution contains NLT 90.0% and NMT 110.0% of the labeled amount of hydroxyzine hydrochloride ($C_{21}H_{27}ClN_2O_2 \cdot 2HCl$).

IDENTIFICATION

- **A.** The retention time of the major peak of the *Sample solution* corresponds to that of the hydroxyzine peak of the *Standard solution*, as obtained in the Assay.
- **B.** The UV spectrum of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.

ASSAY

• PROCEDURE

Solution A: [Trifluoroacetic acid](#) and water (0.1:99.9)

Solution B: [Trifluoroacetic acid](#) and [acetonitrile](#) (0.05: 99.95)

Mobile phase: See [Table 1](#).

Table 1

Time (min)	Solution A (%)	Solution B (%)
0	90	10
4	90	10
12	60	40
16	60	40
21	20	80
25	20	80
26	90	10
30	90	10

Diluent: [Acetonitrile](#) and [water](#) (30:70)

Standard solution: 0.05 mg/mL of [USP Hydroxyzine Hydrochloride RS](#) in *Diluent*

Sample stock solution: Nominally 0.5 mg/mL of hydroxyzine hydrochloride from Oral Solution in *Diluent* prepared as follows. Transfer a portion of Oral Solution, equivalent to 25 mg of hydroxyzine hydrochloride, to a 50-mL volumetric flask. Dissolve and dilute with *Diluent* to volume.

Sample solution: Nominally 0.05 mg/mL of hydroxyzine hydrochloride from the *Sample stock solution* in *Diluent*

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 230 nm. For *Identification B*, use a diode array detector in the range of 200–400 nm.

Column: 2.1-mm × 15-cm; 1.8-μm packing [L1](#)

Column temperature: 30°

Flow rate: 0.3 mL/min

Injection volume: 2 μL

System suitability

Sample: *Standard solution*

Suitability requirements

Tailing factor: NMT 2.0**Relative standard deviation:** NMT 1.0%**Analysis****Samples:** Standard solution and Sample solutionCalculate the percentage of the labeled amount of hydroxyzine hydrochloride ($C_{21}H_{27}ClN_2O_2 \cdot 2HCl$) in the portion of Oral Solution taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

 r_U = peak response of hydroxyzine from the *Sample solution* r_S = peak response of hydroxyzine from the *Standard solution* C_S = concentration of [USP Hydroxyzine Hydrochloride RS](#) in the *Standard solution* (mg/mL) C_U = nominal concentration of hydroxyzine hydrochloride in the *Sample solution* (mg/mL)**Acceptance criteria:** 90.0%–110.0%**PERFORMANCE TESTS**

- [UNIFORMITY OF DOSAGE UNITS \(905\)](#)

For single-unit containers**Acceptance criteria:** Meets the requirements

- [DELIVERABLE VOLUME \(698\)](#)

For multiple-unit containers**Acceptance criteria:** Meets the requirements**IMPURITIES**

- [ORGANIC IMPURITIES](#)

Solution A, Solution B, Mobile phase, and Diluent: Prepare as directed in the Assay.**Standard stock solution:** 25.0 µg/mL each of [USP Hydroxyzine Hydrochloride RS](#), [USP Hydroxyzine Related Compound A RS](#), and [USP 4-Chlorobenzophenone RS](#) in *Diluent***Standard solution:** 1.0 µg/mL each of [USP Hydroxyzine Hydrochloride RS](#), [USP Hydroxyzine Related Compound A RS](#), and [USP 4-Chlorobenzophenone RS](#) from the *Standard stock solution* in *Diluent***Sample solution:** Nominally 500 µg/mL of hydroxyzine hydrochloride from Oral Solution in *Diluent* prepared as follows. Transfer a portion of Oral Solution, equivalent to 25 mg of hydroxyzine hydrochloride, to a 50-mL volumetric flask. Dissolve and dilute with *Diluent* to volume.**Chromatographic system**(See [Chromatography \(621\), System Suitability](#).)**Mode:** LC**Detectors****Hydroxyzine related compound A and hydroxyzine hydrochloride:** UV 230 nm**4-Chlorobenzophenone:** UV 254 nm**Column:** 2.1-mm × 15-cm; 1.8-µm packing [L1](#)**Column temperature:** 30°**Flow rate:** 0.3 mL/min**Injection volume:** 2 µL**System suitability****Sample:** Standard solution[NOTE—See [Table 2](#) for the relative retention times.]**Suitability requirements****Resolution:** NLT 5.0 between hydroxyzine related compound A and hydroxyzine**Relative standard deviation:** NMT 3.0% for hydroxyzine related compound A, hydroxyzine, and 4-chlorobenzophenone**Analysis****Samples:** Standard solution and Sample solution**For impurities detected at UV 230 nm**

Calculate the percentage of any individual unspecified degradation product in the portion of Oral Solution taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

 r_U = peak response of any individual unspecified degradation product from the *Sample solution* r_S = peak response of hydroxyzine from the *Standard solution* C_S = concentration of [USP Hydroxyzine Hydrochloride RS](#) in the *Standard solution* (µg/mL)

C_u = nominal concentration of hydroxyzine hydrochloride in the *Sample solution* (µg/mL)

For 4-chlorobenzophenone detected at UV 254 nm

Calculate the percentage of 4-chlorobenzophenone in the portion of Oral Solution taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_u = peak response of 4-chlorobenzophenone from the *Sample solution*

r_s = peak response of 4-chlorobenzophenone from the *Standard solution*

C_s = concentration of [USP 4-Chlorobenzophenone RS](#) in the *Standard solution* (µg/mL)

C_u = nominal concentration of hydroxyzine hydrochloride in the *Sample solution* (µg/mL)

Acceptance criteria: See [Table 2](#). Disregard any peak below 0.03%.

Table 2

Name	Relative Retention Time	Acceptance Criteria, NMT (%)
Hydroxyzine related compound A ^a	0.94	—
Hydroxyzine	1.0	—
4-Chlorobenzophenone	1.4	0.2
Any individual unspecified degradation product	—	0.2
Total degradation products	—	0.75

^a This is a process impurity that is controlled in the drug substance. It is not to be reported or included in the total degradation products.

ADDITIONAL REQUIREMENTS

• **PACKAGING AND STORAGE:** Preserve in tight, light-resistant containers. Store at controlled room temperature.

• [USP REFERENCE STANDARDS \(11\)](#)

[USP 4-Chlorobenzophenone RS](#)

4-Chlorobenzophenone.

$C_{13}H_9ClO$ 216.66

[USP Hydroxyzine Hydrochloride RS](#)

[USP Hydroxyzine Related Compound A RS](#)

p-Chlorobenzhydrylpiperazine;

Also known as 1-[(4-Chlorophenyl)phenylmethyl]piperazine.

$C_{17}H_{19}ClN_2$ 286.80

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
HYDROXYZINE HYDROCHLORIDE ORAL SOLUTION	Documentary Standards Support	SM42020 Small Molecules 4

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 42(1)

Current DocID: GUID-0F70AED9-0C10-4A00-9C20-AC1ADAEE434A_4_en-US

Previous DocID: GUID-0F70AED9-0C10-4A00-9C20-AC1ADAEE434A_2_en-US

DOI: https://doi.org/10.31003/USPNF_M39480_04_01

DOI ref: c6o9b