

Status: Currently Official on 15-Feb-2025

Official Date: Official as of 01-Dec-2023

Document Type: USP Monographs

DocId: GUID-27FDEF6B-76C1-444B-BCEA-C01C732A9CEA_4_en-US

DOI: https://doi.org/10.31003/USPNF_M38910_04_01

DOI Ref: hh44n

© 2025 USPC

Do not distribute

Hydroxychloroquine Sulfate Tablets

To view the Notice from the Expert Committee that posted in conjunction with this accelerated revision, please click www.uspnf.com/rb-hydroxychloroquine-sulfate-tabs-20231117.

DEFINITION

Hydroxychloroquine Sulfate Tablets contain NLT 93.0% and NMT 107.0% of the labeled amount of hydroxychloroquine sulfate ($C_{18}H_{26}ClN_3O \cdot H_2SO_4$).

IDENTIFICATION

• A. [IDENTIFICATION—ORGANIC NITROGENOUS BASES \(181\)](#)

Sample solution: Nominally 20 mg/mL of hydroxychloroquine sulfate in [water](#) prepared as follows. Triturate a quantity of finely powdered Tablets, equivalent to about 1 g of hydroxychloroquine sulfate, with 50 mL of [water](#), and filter (retain the remainder of the filtrate for *Identification B*).

Acceptance criteria: The clear filtrate meets the requirements.

• B. [IDENTIFICATION TESTS—GENERAL \(191\), Chemical Identification Tests, Sulfate](#): The clear filtrate obtained from *Identification A* meets the requirements.

• C. The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.

ASSAY

• PROCEDURE

Solution A: [Acetonitrile](#), [water](#), and [phosphoric acid](#) (100:900:2)

Solution B: [Acetonitrile](#), [water](#), and [phosphoric acid](#) (800:200:1)

Mobile phase: *Solution A* and *Solution B* (97:3)

Standard solution: 0.01 mg/mL of [USP Hydroxychloroquine Sulfate RS](#) in *Solution A* prepared as follows. Transfer a suitable quantity of [USP Hydroxychloroquine Sulfate RS](#) to a suitable volumetric flask, and add *Solution A* to about 75% of the flask volume. Sonicate for NLT 5 min or until solids are dissolved. Dilute with *Solution A* to volume.

Sample stock solution: Nominally 1.0 mg/mL of hydroxychloroquine sulfate in *Solution A* prepared as follows. Transfer a portion of finely ground powder, from NLT 20 Tablets, equivalent to about 200 mg of hydroxychloroquine sulfate to a 200-mL volumetric flask and add *Solution A* to about 75% of the flask volume. Sonicate for NLT 10 min or until solids are dissolved. Dilute with *Solution A* to volume.

Sample solution: Nominally 0.01 mg/mL of hydroxychloroquine sulfate in *Solution A* from *Sample stock solution*. Pass through a suitable filter.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 220 nm

Column: 2.0-mm × 10-cm; 2-μm packing [L1](#)

Column temperature: 35°

Flow rate: 0.8 mL/min

Injection volume: 3 μL

System suitability

Sample: *Standard solution*

Suitability requirements

Tailing factor: NMT 2.0

Relative standard deviation: NMT 2.0%

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of the labeled amount of hydroxychloroquine sulfate ($C_{18}H_{26}ClN_3O \cdot H_2SO_4$) in the portion of Tablets taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

r_U = peak response of hydroxychloroquine from the *Sample solution*

r_S = peak response of hydroxychloroquine from the *Standard solution*

C_S = concentration of [USP Hydroxychloroquine Sulfate RS](#) in the *Standard solution* (mg/mL)

C_U = nominal concentration of hydroxychloroquine sulfate in the *Sample solution* (mg/mL)

Acceptance criteria: 93.0%–107.0%

PERFORMANCE TESTS

Change to read:

- [DISSOLUTION \(711\)](#).

Test 1

Medium: [Water](#); 900 mL, ▲deaerated, if necessary▲ (RB 1-Dec-2023)

Apparatus 2: 50 rpm

Time: 60 min

Standard solution: [USP Hydroxychloroquine Sulfate RS](#) in *Medium*

Sample solution: Pass a portion of the solution through a suitable filter. Dilute with *Medium*, if necessary.

Instrumental conditions

Mode: UV

Analytical wavelength: 343 nm

▲Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of the labeled amount of hydroxychloroquine sulfate ($C_{18}H_{26}ClN_3O \cdot H_2SO_4$) dissolved:

$$\text{Result} = (A_U/A_S) \times C_S \times D \times V \times (1/L) \times 100$$

A_U = absorbance of the *Sample solution*

A_S = absorbance of the *Standard solution*

C_S = concentration of [USP Hydroxychloroquine Sulfate RS](#) in the *Standard solution* (mg/mL)

D = dilution factor of the *Sample solution*

V = volume of the *Medium*, 900 mL

L = label claim (mg/Tablet)

▲ (RB 1-Dec-2023)

Tolerances: NLT 70% (Q) of the labeled amount of hydroxychloroquine sulfate ($C_{18}H_{26}ClN_3O \cdot H_2SO_4$) is dissolved.

Test 2

If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 2*.

Medium: 0.1 N [hydrochloric acid](#); 500 mL, deaerated

Apparatus 1: 100 rpm

Time: 30 min

Standard solution: 0.013 mg/mL [USP Hydroxychloroquine Sulfate RS](#) in *Medium*. Sonicate to dissolve, if necessary.

Sample solution: Pass a portion of the solution through a suitable filter of 0.45- μ m pore size and discard NLT 5 mL of filtrate. Dilute with *Medium* to a concentration similar to the *Standard solution*.

Instrumental conditions

(See [Ultraviolet-Visible Spectroscopy \(857\)](#).)

Mode: UV

Analytical wavelength: 343 nm

Blank: *Medium*

Analysis**Samples:** Standard solution and Sample solution

Calculate the percentage of the labeled amount of hydroxychloroquine sulfate ($C_{18}H_{26}ClN_3O \cdot H_2SO_4$) dissolved:

$$\text{Result} = (A_U/A_S) \times C_S \times D \times V \times (1/L) \times 100$$

A_U = absorbance of the Sample solution

A_S = absorbance of the Standard solution

C_S = concentration of [USP Hydroxychloroquine Sulfate RS](#) in the Standard solution (mg/mL)

D = dilution factor of the Sample solution

V = volume of the Medium, 500 mL

L = label claim (mg/Tablet)

Tolerances: NLT 80% (Q) of the labeled amount of hydroxychloroquine sulfate ($C_{18}H_{26}ClN_3O \cdot H_2SO_4$) is dissolved.

▲ **Test 3:** If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 3.

Medium: 0.1 N [hydrochloric acid](#); 500 mL, deaerated

Apparatus 2: 50 rpm

Time: 30 min

Standard solution: ($L/500$) mg/mL of [USP Hydroxychloroquine Sulfate RS](#) in Medium, where L is the label claim of hydroxychloroquine sulfate in mg/Tablet. Sonicate to dissolve.

Sample solution: Pass a portion of the solution through a suitable filter of 0.45-μm pore size, discarding an appropriate volume of filtrate so that a consistent result can be obtained.

Instrumental conditions

(See [Ultraviolet-Visible Spectroscopy \(857\)](#).)

Mode: UV

Analytical wavelength: 343 nm

Cell path length: 0.2 mm

Blank: Medium

Analysis**Samples:** Standard solution and Sample solution

Calculate the percentage of the labeled amount of hydroxychloroquine sulfate ($C_{18}H_{26}ClN_3O \cdot H_2SO_4$) dissolved:

$$\text{Result} = (A_U/A_S) \times C_S \times V \times (1/L) \times 100$$

A_U = absorbance of the Sample solution

A_S = absorbance of the Standard solution

C_S = concentration of [USP Hydroxychloroquine Sulfate RS](#) in the Standard solution (mg/mL)

V = volume of the Medium, 500 mL

L = label claim (mg/Tablet)

Tolerances: NLT 80% (Q) of the labeled amount of hydroxychloroquine sulfate ($C_{18}H_{26}ClN_3O \cdot H_2SO_4$) is dissolved. ▲ (RB 1-Dec-2023)

- [UNIFORMITY OF DOSAGE UNITS \(905\)](#): Meet the requirements

IMPURITIES

- [ORGANIC IMPURITIES](#)

Solution A: [Acetonitrile](#), [water](#), and [phosphoric acid](#) (100:900:2)

Solution B: [Acetonitrile](#), [water](#), and [phosphoric acid](#) (800:200:1)

Mobile phase: See [Table 1](#).

Table 1

Time (min)	Solution A (%)	Solution B (%)
0	97	3
1.8	97	3
2.5	5	95
3.5	5	95
4.0	97	3
6.0	97	3

Standard stock solution: Use the *Standard solution* from the Assay.

Standard solution: 0.001 mg/mL of [USP Hydroxychloroquine Sulfate RS](#) in *Solution A* from *Standard stock solution*

Sample stock solution: Nominally 1.0 mg/mL of hydroxychloroquine sulfate in *Solution A* prepared as follows. Transfer a portion of finely ground powder, from NLT 20 Tablets, equivalent to about 200 mg of hydroxychloroquine sulfate, to a 200-mL volumetric flask and add *Solution A* to about 75% of the flask volume. Sonicate for NLT 10 min or until solids are dissolved. Dilute with *Solution A* to volume.

Sample solution: Nominally 0.1 mg/mL of hydroxychloroquine sulfate in *Solution A* from *Sample stock solution*. Pass through a suitable filter.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 220 nm

Column: 2.0-mm × 10-cm; 2-μm packing [L1](#)

Column temperature: 35°

Flow rate: 0.8 mL/min

Injection volume: 2 μL

System suitability

Sample: *Standard solution*

Suitability requirements

Tailing factor: NMT 2.0

Relative standard deviation: NMT 5.0%

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of any individual impurity in the portion of Tablets taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times (1/F) \times 100$$

r_U = peak response of each individual impurity from the *Sample solution*

r_S = peak response of hydroxychloroquine from the *Standard solution*

C_S = concentration of [USP Hydroxychloroquine Sulfate RS](#) in the *Standard solution* (mg/mL)

C_U = nominal concentration of hydroxychloroquine sulfate in the *Sample solution* (mg/mL)

F = relative response factor (see [Table 2](#))

Acceptance criteria: See [Table 2](#). The reporting threshold is 0.1%.

Table 2

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Desethyl hydroxychloroquine ^{a,b}	0.87	1.3	0.5

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Hydroxychloroquine	1.0	—	—
Hydroxychloroquine acetate ^{b,c}	1.52	0.81	—
Sulfohydroxychloroquine ^{b,d}	2.32	1.0	—
Chloroquine related compound A ^{b,e}	4.46	2.4	—
Any individual unspecified impurity	—	1.0	0.2
Total impurities	—	—	2.0

^a 2-((4-[(7-Chloroquinolin-4-yl)amino]pentyl)amino)ethan-1-ol.

^b Process impurity monitored in the drug substance monograph.

^c 2-((4-[(7-Chloroquinolin-4-yl)amino]pentyl)ethylamino)ethyl acetate.

^d 2-((4-[(7-Chloroquinolin-4-yl)amino]pentyl)ethylamino)ethyl hydrogen sulfate.

^e 4,7-Dichloroquinoline.

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in tight, light-resistant containers.
- **LABELING:** The labeling states the *Dissolution* test used only if *Test 1* is not used.
- **USP REFERENCE STANDARDS (11).**
[USP Hydroxychloroquine Sulfate RS](#)

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
HYDROXYCHLOROQUINE SULFATE TABLETS	Documentary Standards Support	SM12020 Small Molecules 1
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM12020 Small Molecules 1

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 44(3)

Current DocID: GUID-27FDEF6B-76C1-444B-BCEA-C01C732A9CEA_4_en-US

DOI: https://doi.org/10.31003/USPNF_M38910_04_01

DOI ref: [hh44n](#)