

Status: Currently Official on 15-Feb-2025

Official Date: Official as of 01-May-2018

Document Type: USP Monographs

DocID: GUID-03BAA0B6-596E-49C8-A995-4C4E58A4ED84\_3\_en-US

DOI: [https://doi.org/10.31003/USPNF\\_M38790\\_03\\_01](https://doi.org/10.31003/USPNF_M38790_03_01)

DOI Ref: h6mpy

© 2025 USPC

Do not distribute

## Hydroxocobalamin Injection

» Hydroxocobalamin Injection is a sterile solution of Hydroxocobalamin in Water for Injection. It contains not less than 95.0 percent and not more than 115.0 percent of the labeled amount of hydroxocobalamin ( $C_{62}H_{89}CoN_{13}O_{15}P$ ).

**Packaging and storage**—Preserve in single-dose or in multiple-dose containers, preferably of Type I glass, protected from light.

**USP REFERENCE STANDARDS (11)**—

[USP Cyanocobalamin \(Crystalline\) RS](#)

**Identification**—Dilute 3.0 mL of Injection with pH 4.0 buffer (prepared by dissolving 2.61 g of sodium acetate and 20.5 g of sodium chloride in 5.25 mL of glacial acetic acid and sufficient water to make 1500 mL of solution) to 100 mL: the UV-visible absorption spectrum of this solution exhibits maxima at  $352 \pm 2$  nm and  $525 \pm 2$  nm. The ratio  $A_{352}/A_{525}$  is between 2.7 and 3.3.

**BACTERIAL ENDOTOXINS TEST (85)**—It contains not more than 0.4 USP Endotoxin Unit per  $\mu$ g of hydroxocobalamin.

**pH (791)**: between 3.5 and 5.0.

**Other requirements**—It meets the requirements under [Injections and Implanted Drug Products \(1\)](#).

**Assay**—

**pH 9.3 Buffer**—Dissolve 23.8 g of sodium borate and 402 mg of boric acid in sufficient water to make 1500 mL of solution, and mix.

**Standard preparation**—Dissolve a suitable quantity of [USP Cyanocobalamin \(Crystalline\) RS](#), accurately weighed, in **pH 9.3 Buffer** and dilute quantitatively, and stepwise if necessary, to obtain a solution having a known concentration of about 30  $\mu$ g per mL.

**Assay preparation**—Transfer an accurately measured volume of Injection, equivalent to about 5 mg of hydroxocobalamin, to a 50-mL volumetric flask containing about 25 mL of **pH 9.3 Buffer**. Add 5.0 mL of potassium cyanide solution (1 in 10,000), allow to stand at room temperature for 30 minutes, dilute with **pH 9.3 Buffer** to volume, and mix. Transfer 15.0 mL of this solution to a second 50-mL volumetric flask, dilute with **pH 9.3 Buffer** to volume, and mix.

**Procedure**—Concomitantly determine the absorbances of the solutions in 1-cm cells at the wavelength of maximum absorbance at about 361 nm, with a suitable spectrophotometer, using **pH 9.3 Buffer** as the blank. Calculate the quantity, in mg, of hydroxocobalamin ( $C_{62}H_{89}CoN_{13}O_{15}P$ ) in each mL of the Injection taken by the formula:

$$(1346.36/1355.37)(0.1667C/V)(A_u/A_s)$$

in which 1346.36 and 1355.37 are the molecular weights of hydroxocobalamin and cyanocobalamin, respectively; C is the concentration, in  $\mu$ g per mL, of [USP Cyanocobalamin \(Crystalline\) RS](#) in the **Standard preparation**; V is the volume, in mL, of Injection taken; and  $A_u$  and  $A_s$  are the absorbances of the **Assay preparation** and the **Standard preparation**, respectively.

**Auxiliary Information** - Please [check for your question in the FAQs](#) before contacting USP.

| Topic/Question             | Contact                                       | Expert Committee          |
|----------------------------|-----------------------------------------------|---------------------------|
| HYDROXOCOBALAMIN INJECTION | <a href="#">Documentary Standards Support</a> | SM22020 Small Molecules 2 |

**Chromatographic Database Information:** [Chromatographic Database](#)

**Most Recently Appeared In:**

Pharmacopeial Forum: Volume No. Information currently unavailable

**Current DocID: GUID-03BAA0B6-596E-49C8-A995-4C4E58A4ED84\_3\_en-US**

**Previous DocID: GUID-03BAA0B6-596E-49C8-A995-4C4E58A4ED84\_1\_en-US**

**DOI:** [https://doi.org/10.31003/USPNF\\_M38790\\_03\\_01](https://doi.org/10.31003/USPNF_M38790_03_01)

OFFICIAL