

Status: Currently Official on 15-Feb-2025
Official Date: Official as of 01-May-2020
Document Type: USP Monographs
DocId: GUID-C96BDFE6-4FD5-4B58-AF86-2955407CBF0E_4_en-US
DOI: https://doi.org/10.31003/USPNF_M37760_04_01
DOI Ref: ah56d

© 2025 USPC
Do not distribute

Hydralazine Hydrochloride

$C_8H_8N_4 \cdot HCl$ 196.64

Phthalazine, 1-hydrazino-, monohydrochloride;

1-Hydrazinophthalazine monohydrochloride CAS RN®: 304-20-1; UNII: FD171B778Y.

DEFINITION

Hydralazine Hydrochloride contains NLT 98.0% and NMT 102.0% of hydralazine hydrochloride ($C_8H_8N_4 \cdot HCl$), calculated on the dried basis.

IDENTIFICATION

Change to read:

- A. **▲SPECTROSCOPIC IDENTIFICATION TESTS (197), Infrared Spectroscopy: 197M▲** (CN 1-MAY-2020)
- B. The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.
- C. **IDENTIFICATION TESTS—GENERAL (191), Chemical Identification Tests, Chloride**

Sample solution: 0.25 mg/mL of Hydralazine Hydrochloride in [water](#)

Acceptance criteria: Meets the requirements

ASSAY

• PROCEDURE

Mobile phase: Dissolve 1.44 g of [sodium dodecyl sulfate](#) and 0.75 g of [tetrabutylammonium bromide](#) in 770 mL of [water](#), and add 230 mL of [acetonitrile](#). Adjust with 0.1 N [sulfuric acid](#) to a pH of 3.0.

Diluent: 0.1 N [acetic acid](#)

System suitability stock solution: 0.25 mg/mL of [USP Hydralazine Hydrochloride RS](#) and 0.05 mg/mL of [USP Phthalazine RS](#) in *Diluent*

System suitability solution: 25 μ g/mL of [USP Hydralazine Hydrochloride RS](#) and 5 μ g/mL of [USP Phthalazine RS](#) in *Diluent* from the *System suitability stock solution*

Standard stock solution: 0.4 mg/mL of [USP Hydralazine Hydrochloride RS](#) in *Diluent*

Standard solution: 40 μ g/mL of [USP Hydralazine Hydrochloride RS](#) in *Diluent* from the *Standard stock solution*

Sample stock solution: 0.4 mg/mL of Hydralazine Hydrochloride in *Diluent*

Sample solution: 40 μ g/mL of Hydralazine Hydrochloride in *Diluent* prepared as follows. Transfer a suitable amount of the *Sample stock solution* to a suitable volumetric flask. Dilute with *Diluent* to volume and filter, discarding the first 10 mL of the filtrate.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 230 nm

Column: 4.0-mm \times 25-cm; 10- μ m packing L10

Flow rate: 1 mL/min

Injection volume: 25 μ L

System suitability

Samples: *System suitability solution* and *Standard solution*

[**NOTE**—The relative retention times for phthalazine and hydralazine hydrochloride are 0.65 and 1.0, respectively.]

Suitability requirements

Resolution: NLT 4.0 between the phthalazine and hydralazine peaks, *System suitability solution*

Relative standard deviation: NMT 0.73%, *Standard solution*

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of hydralazine hydrochloride ($C_8H_8N_4 \cdot HCl$) in the portion of Hydralazine Hydrochloride taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

r_U = peak response of hydralazine from the *Sample solution*

r_S = peak response of hydralazine from the *Standard solution*

C_S = concentration of [USP Hydralazine Hydrochloride RS](#) in the *Standard solution* ($\mu\text{g/mL}$)

C_U = concentration of Hydralazine Hydrochloride in the *Sample solution* ($\mu\text{g/mL}$)

Acceptance criteria: 98.0%–102.0% on the dried basis

IMPURITIES

• [RESIDUE ON IGNITION \(281\)](#): NMT 0.1%

• **ORGANIC IMPURITIES**

Mobile phase, Diluent, and System suitability solution: Prepare as directed in the Assay.

Standard solution: 0.001 mg/mL of [USP Hydralazine Hydrochloride RS](#) in *Diluent*. Sonication may be necessary for complete dissolution.

Sample solution: 0.5 mg/mL of Hydralazine Hydrochloride in *Diluent* prepared as follows. Transfer a suitable amount of Hydralazine

Hydrochloride to a suitable volumetric flask. Add *Diluent* to fill about 60% of the total volume, and sonicate to dissolve. Cool, and dilute with *Diluent* to volume.

Chromatographic system: Proceed as directed in the Assay, except for *Injection volume*.

Injection volume: 20 μL

System suitability

Samples: *System suitability solution* and *Standard solution*

Suitability requirements

Resolution: NLT 4.0 between the phthalazine and hydralazine peaks, *System suitability solution*

Relative standard deviation: NMT 5.0%, *Standard solution*

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of each impurity in the portion of Hydralazine Hydrochloride taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times (1/F) \times 100$$

r_U = peak response of each impurity from the *Sample solution*

r_S = peak response of hydralazine from the *Standard solution*

C_S = concentration of [USP Hydralazine Hydrochloride RS](#) in the *Standard solution* (mg/mL)

C_U = concentration of Hydralazine Hydrochloride in the *Sample solution* (mg/mL)

F = relative response factor (see [Table 1](#))

Acceptance criteria: See [Table 1](#).

Table 1

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
1-Phthalazinone	0.55	2.3	0.15
2-Formyl benzoic acid	0.60	1.1	0.15

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Phthalazine	0.75	3.6	0.15
1-Chlorophthalazine	0.83	1.5	0.15
Hydralazine	1.00	—	—
Any unspecified impurity	—	1.0	0.10
Total impurities ^a	—	—	1.0

^a Total impurities include specified and unspecified impurities.

• **LIMIT OF HYDRAZINE**

Buffer: Dissolve 5.82 g of [dibasic sodium phosphate](#) and 3.81 g of [monobasic potassium phosphate](#) in 1 L of [water](#), and adjust with either 1 N [sodium hydroxide](#) or 1 N [phosphoric acid](#) to a pH of 7.0 ± 0.1 .

Mobile phase: Dissolve 300 mg of [edetate disodium](#) in 300 mL of [water](#) in a 1-L volumetric flask. Dilute with [acetonitrile](#) to volume.

Benzaldehyde solution: Transfer 1.0 mL of benzaldehyde to a 100-mL volumetric flask, and dilute with a mixture of [methanol](#) and [water](#) (9:1) to volume.

Acetonitrile solution: Transfer 300 mL of [water](#) to a 1000-mL volumetric flask, and dilute with [acetonitrile](#) to volume.

Standard stock solution: 0.65 mg/mL of hydrazine dihydrochloride in [water](#)

Standard solution 1: 0.325 μ g/mL of hydrazine dihydrochloride in [water](#) from *Standard stock solution*

Standard solution 2: Transfer 1.0 mL of *Standard solution 1* to a 10-mL flask. Add 4.0 mL of *Benzaldehyde solution*, and shake by mechanical means for 20 min.

Standard solution 3: Transfer 2.0 mL of *Standard solution 2* to a 5-mL volumetric flask, and dilute with *Acetonitrile solution* to volume.

Extraction column: Use a freshly conditioned solid phase extraction column containing benzenesulfonic acid strong cation-exchange packing with a sorbent-mass to column volume ratio of 500 mg/3 mL, or equivalent. The column is conditioned as follows. Wash the column with two 2.0-mL portions of hexanes, and dry under vacuum for 2 min. Wash the column with two 2.0-mL portions of [methanol](#), two 2.0-mL portions of [water](#), and two 2.0-mL portions of *Buffer*. At no time after the hexanes wash should the column be allowed to dry out.

Sample solution: Transfer about 20 mg of Hydralazine Hydrochloride to a 10-mL reaction vessel, and dissolve in 1.0 mL of [water](#). Add 4.0 mL of *Benzaldehyde solution*, and shake by mechanical means for 20 min. Pipet 2.0 mL of this solution into the *Extraction column* and elute into a 5-mL volumetric flask. Wash the *Extraction column* with two 1.5-mL portions of the *Acetonitrile solution*, collecting the washings with the eluate, and dilute with *Acetonitrile solution* to volume.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 310 nm

Column: 4.0-mm \times 25-cm; 10- μ m packing L1

Flow rate: 1 mL/min

Injection volume: 20 μ L

System suitability

Sample: *Standard solution 3*

[NOTE—The relative retention times for hydralazine and hydrazine are about 1.0 and 1.5, respectively.]

Suitability requirements

Relative standard deviation: NMT 2.0%

Analysis

Samples: *Standard solution 3* and *Sample solution*

Calculate the percentage of hydrazine in the portion of hydralazine hydrochloride ($C_8H_8N_4 \cdot HCl$) taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times (M_{r1}/M_{r2}) \times 100$$

r_u = peak response of hydrazine from the *Sample solution*

r_s = peak response of hydrazine from *Standard solution 3* C_s = concentration of hydrazine dihydrochloride in *Standard solution 3* ($\mu\text{g/mL}$) C_u = concentration of Hydralazine Hydrochloride in the *Sample solution* ($\mu\text{g/mL}$) M_{r1} = molecular weight of hydrazine, 32.05 M_{r2} = molecular weight of hydrazine dihydrochloride, 104.97**Acceptance criteria:** NMT 0.001%**SPECIFIC TESTS**• [pH \(791\)](#)**Sample solution:** 20 mg/mL of Hydralazine Hydrochloride in [water](#)**Acceptance criteria:** 3.5–4.2• [Loss on Drying \(731\)](#)**Analysis:** Dry at 110° for 15 h.**Acceptance criteria:** NMT 0.5%**ADDITIONAL REQUIREMENTS**• **PACKAGING AND STORAGE:** Preserve in tight containers. Store at controlled room temperature.• [USP REFERENCE STANDARDS \(11\)](#)[USP Hydralazine Hydrochloride RS](#)[USP Phthalazine RS](#) C₈H₆N₂

130.15

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
HYDRALAZINE HYDROCHLORIDE	Documentary Standards Support	SM22020 Small Molecules 2

Chromatographic Database Information: [Chromatographic Database](#)**Most Recently Appeared In:**

Pharmacopeial Forum: Volume No. PF 42(5)

Current DocID: [GUID-C96BDFE6-4FD5-4B58-AF86-2955407CBF0E_4_en-US](#)**DOI:** https://doi.org/10.31003/USPNF_M37760_04_01**DOI ref:** [ah56d](#)