


Status: Currently Official on 15-Feb-2025  
Official Date: Official as of 01-Jun-2023  
Document Type: NF Monographs  
DocId: GUID-F22B8EB9-5411-4180-ACB4-AA85BB34490A\_4\_en-US  
DOI: [https://doi.org/10.31003/USPNF\\_M36210\\_04\\_01](https://doi.org/10.31003/USPNF_M36210_04_01)  
DOI Ref: w2u11

© 2025 USPC  
Do not distribute

## Guar Gum



CAS RN®: 9000-30-0.

### DEFINITION

Guar Gum is the flour obtained by grinding the endosperms of seeds of *Cyamopsis tetragonolobus* (L.) Taub. (Fam. Leguminosae). It consists chiefly of high molecular weight hydrocolloidal polysaccharides composed of galactomannan. The content of galactomannan is NLT 66.0%. Galactomannan consists of a linear main chain of  $\beta$ -(1 $\rightarrow$ 4)-glycosidically linked mannopyranoses and single  $\alpha$ -(1 $\rightarrow$ 6)-glycosidically linked galactopyranoses, and the ratio of the mannose and galactose is from 1.4:1 to 2.2:1.

### IDENTIFICATION

#### • A. INDICATION FOR A POLYMERIC COMPOUND AND DISTINCTION FROM LOCUST BEAN GUM

**Sample:** 2 g

**Analysis 1:** Place the *Sample* in a 400-mL beaker, and moisten it with 4 mL of isopropyl alcohol. Add 200 mL of cold water with vigorous stirring, and continue stirring until the *Sample* is completely and uniformly dispersed.

**Acceptance criteria 1:** An opalescent, viscous dispersion results.

**Analysis 2:** Transfer 100 mL of the sample dispersion prepared above to a 400-mL beaker, heat in a boiling water bath for about 10 min, and then cool to room temperature.

**Acceptance criteria 2:** No appreciable increase in viscosity is produced (distinction from locust bean gum: see [Reagents, Indicators, and Solutions—Reagent Specifications](#)).

#### • B. IDENTIFICATION OF CONSTITUTING MANNOSE AND GALACTOSE BY THIN-LAYER CHROMATOGRAPHY

**Mobile phase:** Acetonitrile and water (85:15)

**Standard solution:** Dissolve 10 mg of [USP Galactose RS](#) and 10 mg of [USP Mannose RS](#) in 2 mL of water, and dilute with methanol to 20 mL.

**Sample solution:** Transfer 20 mg of Guar Gum to a test tube, add 4 mL of a 100 mg/mL solution of trifluoroacetic acid, and shake vigorously to dissolve the forming gel. Stopper the tube, and heat the mixture at 115° for 1 h 20 min in a dry bath (heating block) or oil bath. Cool, transfer the hydrolysate to a centrifuge tube, and centrifuge. Some suspended particles/gel are formed. Pass the supernatant solution through a 0.45- $\mu$ m disc filter. Wash the test tube and the centrifuge tube with two 5-mL portions of water, and filter. Combine the washing filtrate with the filtered supernatant of the hydrolysate. Transfer the combined clear filtrate to a 50-mL flask, and evaporate the solution to dryness under reduced pressure. To the resulting residue add 0.2 mL of water and 1.8 mL of methanol.

#### Chromatographic system

(See [Chromatography \(621\), Thin-Layer Chromatography](#).)

**Mode:** TLC

**Absorbent layer:** 0.25-mm silica gel 60 F<sub>254</sub>

**Application volume:** 5  $\mu$ L, as 9-mm bands, using an automated apparatus

**Spray reagent:** Dissolve 3 g of phthalic acid and 0.3 g of aminohippuric acid in ethyl alcohol, and dilute with ethyl alcohol to 100 mL.

#### Analysis

**Samples:** Standard solution and Sample solution

Develop over a path of 15 cm. Spray with Spray reagent, and dry at 120° for 5 min.

**Acceptance criteria:** The chromatogram from the Standard solution shows, in the lower region, two clearly separated brownish or yellowish zones due to galactose and mannose in order of increasing  $R_F$  value. The chromatogram from the Sample solution shows two zones due to galactose and mannose.

**ASSAY****• CONTENT OF GALACTOMANNAN AND RATIO OF CONSTITUTING MANNOSE AND GALACTOSE**

**Mobile phase:** Water

**System suitability solution:** 5 mg/mL of [USP Galactose RS](#), 5 mg/mL of [USP Mannose RS](#), 5 mg/mL of [USP Xylose RS](#), and 5 mg/mL of [USP Dextrose RS](#) in Mobile phase

**Standard solution:** 10 mg/mL of [USP Galactose RS](#) and 10 mg/mL of [USP Mannose RS](#) in Mobile phase

**Sample solution A:** Transfer 100 mg of Guar Gum to a glass test tube. Add 2.0 mL of water and 2.0 mL of 1 M trifluoroacetic acid to the tube, and mix on a vortex mixer for 30 s. Incubate the solution at 105° in an oil-bath heating module for 6 h. After the first 15 min of incubation, mix on a vortex mixer for 30 s. After the 30 min of incubation, mix on a vortex mixer for 30 s. [Note—This ensures that Guar Gum does not stick to the bottom of the test tube and burn.] Before HPLC analysis, mix on a vortex mixer for 30 s, and pass the solution through a 0.45- $\mu$ m PES (polyethersulfone) membrane syringe filter.

**Sample solution B:** 5 mg/mL of Guar Gum in Mobile phase

**Chromatographic system**

(See [Chromatography \(621\), System Suitability](#).)

**Mode:** LC

**Detector:** Refractive index

**Column:** 8.0-mm  $\times$  30-cm; 7- $\mu$ m packing L22

**Temperatures**

**Detector:** 55°

**Column:** 80°

**Flow rate:** 0.75 mL/min

**Injection volume:** 10  $\mu$ L

**Detector purge time:** 1 min

**Run time:** 17 min

**System suitability**

**Samples:** System suitability solution and Standard solution

[Note—The relative retention times for glucose, xylose, galactose, and mannose are 0.88, 0.94, 1.00, and 1.10, respectively.]

**Suitability requirements**

**Resolution:** NLT 0.9 between dextrose and xylose; NLT 1.0 between xylose and galactose; NLT 1.5 between galactose and mannose,  
*System suitability solution*

**Tailing factor:** 0.8–1.8 for the galactose and mannose peaks, *Standard solution*

**Relative standard deviation:** NMT 2.0% for the galactose and mannose peaks, *Standard solution*

**Analysis**

**Samples:** Standard solution, Sample solution A, and Sample solution B

In the chromatogram of Sample solution B, no galactose and mannose peaks are observed.

Calculate the percentage of galactose ( $C_G$ ) or mannose ( $C_M$ ) in the portion of Guar Gum taken:

$$\text{Result } (C_G \text{ or } C_M) = (r_U/r_S) \times (C_S/C_U) \times 100$$

$r_U$  = peak response of galactose or mannose in Sample solution A

$r_S$  = peak response of galactose or mannose in the Standard solution

$C_S$  = concentration of [USP Galactose RS](#) or [USP Mannose RS](#) in the Standard solution (mg/mL)

$C_U$  = concentration of Guar Gum in Sample solution A (mg/mL)

Calculate the content of galactomannans in the portion of Guar Gum taken:

$$\text{Result} = C_M + C_G$$

Calculate the ratio of constituting mannose and galactose in the portion of Guar Gum taken:

**Acceptance criteria****Content of galactomannan:** NLT 66.0%**Ratio of constituting mannose and galactose:** 1.4–2.2**IMPURITIES****Change to read:**

- [▲ ARSENIC \(211\), Procedures, Procedure 2](#) ▲ (CN 1-JUN-2023) : NMT 3 µg/g

**Change to read:**

- [▲ LEAD \(251\), Procedures, Procedure 1](#) ▲ (CN 1-JUN-2023)

**Analysis:** Prepare a *Test Preparation* as directed in the chapter, and use 10 mL of *Diluted Standard Lead Solution* (10 µg of Pb) for the test.**Acceptance criteria:** NMT 10 µg/g**SPECIFIC TESTS**

- [ARTICLES OF BOTANICAL ORIGIN, Total Ash \(561\)](#): NMT 1.5%

**ACID-INSOLUBLE MATTER****Sample:** 1.5 g**Analysis:** Transfer the *Sample* to a 250-mL beaker containing 150 mL of water and 1.5 mL of sulfuric acid. Cover the beaker with a watch glass, and heat the mixture on a steam bath for 6 h, rubbing down the wall of the beaker frequently with a rubber-tipped stirring rod and replacing any water lost by evaporation. At the end of the 6 h heating period, add 500 mg, accurately weighed, of a filter aid, and pass through a tared, ashless filter. Wash the residue several times with hot water, dry the filter and its contents at 105° for 3 h, cool in a desiccator, and weigh. Determine the amount of acid-insoluble matter by subtracting the weight of the filter aid from that of the residue.**Acceptance criteria:** NMT 7.0%

- [MICROBIAL ENUMERATION TESTS \(61\)](#), and [TESTS FOR SPECIFIED MICROORGANISMS \(62\)](#): The total aerobic microbial count does not exceed  $10^4$  cfu/g, and the total combined molds and yeasts count does not exceed  $10^2$  cfu/g. It meets the requirements of the tests for absence of *Salmonella* species and *Escherichia coli*. It is recommended that the enrichment broth contain a 1% cellulase solution additive to optimize the recovery of *Salmonella* from this material.

**PROTEIN****Sample:** 1.0 g**Analysis:** Transfer the *Sample* to a 500-mL Kjeldahl flask, and proceed as directed in [Nitrogen Determination \(461\), Method I](#). Determine the percentage of nitrogen. Calculate the amount of protein by multiplying the percentage of nitrogen by 6.25.**Acceptance criteria:** NMT 10.0%**STARCH****Analysis:** To a dispersion (1 in 10) of Guar Gum add a few drops of iodine TS.**Acceptance criteria:** No blue color is produced.**LOSS ON DRYING (731)****Analysis:** Dry at 105° for 5 h.**Acceptance criteria:** NMT 15.0%**ADDITIONAL REQUIREMENTS**

- **PACKAGING AND STORAGE:** Preserve in well-closed containers.

**USP REFERENCE STANDARDS (11)**[USP Dextrose RS](#)[USP Galactose RS](#)[USP Mannose RS](#)[USP Xylose RS](#)**Auxiliary Information** - Please [check for your question in the FAQs](#) before contacting USP.

| Topic/Question | Contact                                       | Expert Committee          |
|----------------|-----------------------------------------------|---------------------------|
| GUAR GUM       | <a href="#">Documentary Standards Support</a> | CE2020 Complex Excipients |

**Most Recently Appeared In:**

Pharmacopeial Forum: Volume No. PF 41(2)

**Current DocID: GUID-F22B8EB9-5411-4180-ACB4-AA85BB34490A\_4\_en-US**

**DOI: [https://doi.org/10.31003/USPNF\\_M36210\\_04\\_01](https://doi.org/10.31003/USPNF_M36210_04_01)**

**DOI ref: w2u11**

OFFICIAL