

Status: Currently Official on 15-Feb-2025
Official Date: Official as of 01-Feb-2024
Document Type: USP Monographs
DocId: GUID-0445B0E4-AB6E-4955-B258-41AD7BF0AB7E_3_en-US
DOI: https://doi.org/10.31003/USPNF_M36120_03_01
DOI Ref: xrxfq

© 2025 USPC
Do not distribute

Guanfacine Tablets

To view the Notice from the Expert Committee that posted in conjunction with this accelerated revision, please click www.uspnf.com/rb-guanfacine-tabs-20240126.

DEFINITION

Guanfacine Tablets contain an amount of Guanfacine Hydrochloride ($C_9H_9Cl_2N_3O \cdot HCl$) equivalent to NLT 90.0% and NMT 110.0% of the labeled amount of guanfacine ($C_9H_9Cl_2N_3O$).

IDENTIFICATION

- A. The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution* as obtained in the Assay.
- B. [THIN-LAYER CHROMATOGRAPHIC IDENTIFICATION TEST \(201\)](#).

Standard solution: 2 mg/mL of [USP Guanfacine Hydrochloride RS](#) in [methanol](#)

Sample solution: 2 mg/mL in [methanol](#)

Developing solvent system: [Ethyl acetate](#), [glacial acetic acid](#), and [water](#) (5:2:2)

Acceptance criteria: Meet the requirements

ASSAY

• PROCEDURE

Solution A: pH 2.5 diethylamine phosphate prepared as follows. Add 10.3 mL of [diethylamine](#) to 70 mL of [water](#). Adjust with [phosphoric acid](#) to a pH of 2.5 and dilute with [water](#) to 100 mL.

Mobile phase: Dissolve 600 mg of [monobasic potassium phosphate](#) and 3 mL of *Solution A* in 480 mL of [water](#), and mix. Adjust with 0.2 N [sodium hydroxide](#) to a pH of 4.0. While swirling, add 520 mL of [acetonitrile](#).

Standard stock solution A: 0.018 mg/mL of [2,6-dichlorophenylacetic acid](#) in *Mobile phase*

Standard stock solution B: 0.23 mg/mL of [USP Guanfacine Hydrochloride RS](#) in *Mobile phase*

Internal standard solution: 0.5 mg/mL of [butylparaben](#) in *Mobile phase*

Standard solution: 0.046 mg/mL of [USP Guanfacine Hydrochloride RS](#), 3.6 μ g/mL of [2,6-dichlorophenylacetic acid](#) and 0.1 mg/mL of [butylparaben](#) in *Mobile phase* prepared as follows. Transfer 5.0 mL each of *Standard stock solution A*, *Standard stock solution B* and *Internal standard solution* to a 25-mL volumetric flask and dilute with *Mobile phase* to volume.

Sample stock solution: Nominally 0.1 mg/mL of guanfacine in *Mobile phase* prepared as follows. Finely powder NLT 20 Tablets. Transfer an accurately weighed portion of the powder, equivalent to 10 mg of guanfacine, to a 100-mL volumetric flask. Add 50 mL of *Mobile phase* and heat on a steam bath for 5 min. Cool to room temperature and dilute with *Mobile phase* to volume.

Sample solution: Nominally 0.04 mg/mL of guanfacine and 0.1 mg/mL of [butylparaben](#) in *Mobile phase* prepared as follows. Transfer 10.0 mL of *Sample stock solution* to a 25-mL volumetric flask, add 5.0 mL of *Internal standard solution* and dilute with *Mobile phase* to volume.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 220 nm

Column: 3.9-mm \times 30-cm; packing [L1](#)

Flow rate: 1 mL/min

Injection volume: 20 μ L

System suitability

Sample: *Standard solution*

[NOTE—The relative retention times for guanfacine, 2,6-dichlorophenylacetic acid, and butylparaben are 0.4, 0.6, and 1.0, respectively.]

Suitability requirements

Resolution: NLT 1.5 between guanfacine and 2,6-dichlorophenylacetic acid and NLT 1.5 between 2,6-dichlorophenylacetic acid and butylparaben

Relative standard deviation: NMT 2.0%

Analysis**Samples:** Sample solution and Standard solutionCalculate the percentage of guanfacine ($C_9H_9Cl_2N_3O$) in the portion of Tablets taken:

$$\text{Result} = (R_U/R_S) \times (C_S/C_U) \times (M_{r1}/M_{r2}) \times 100$$

 R_U = peak response ratio of guanfacine to butylparaben from the *Sample solution* R_S = peak response ratio of guanfacine to butylparaben from the *Standard solution* C_S = concentration of [USP Guanfacine Hydrochloride RS](#) in the *Standard solution* (mg/mL) C_U = nominal concentration of guanfacine in the *Sample solution* (mg/mL) M_{r1} = molecular weight of guanfacine, 246.09 M_{r2} = molecular weight of guanfacine hydrochloride, 282.55**Acceptance criteria:** 90.0%–110.0%**PERFORMANCE TESTS****Change to read:**

- [Dissolution \(711\)](#).

Test 1**Medium:** [water](#); 500 mL**Apparatus 2:** 50 rpm**Time:** 45 min**Analysis:** Determine the amount of guanfacine ($C_9H_9Cl_2N_3O$) dissolved using the procedure in the Assay, and making any necessary modifications.**Tolerances:** NLT 75% (Q) of the labeled amount of guanfacine ($C_9H_9Cl_2N_3O$) is dissolved.**Test 2:** If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 2*.**Medium:** 0.1 N [hydrochloric acid](#); 500 mL▲, deaerated, if necessary▲ (RB 1-Feb-2024)**Apparatus 2:** 50 rpm**Time:** 30 min**Solution A:** Add 10.3 mL of [diethylamine](#) to 70 mL of [water](#). Adjust with [phosphoric acid](#) to a pH of 2.5. Dilute to 100 mL with [water](#).**Mobile phase:** Dissolve 662.5 mg of [potassium phosphate, monobasic](#) and 3 mL of *Solution A* in 530 mL of [water](#). Adjust with 0.2 N [sodium hydroxide](#) solution to a pH of 4.0. Add 470 mL of [acetonitrile](#) and mix.**Standard solution:** ($L/500$) mg/mL of guanfacine from [USP Guanfacine Hydrochloride RS](#) in *Medium*, where L is the label claim in mg/Tablet. Sonicate to dissolve.**Sample solution:** Pass a portion of the solution under test through a suitable filter of 0.45- μ m pore size, discarding the first 3 mL of the filtrate.**Chromatographic system**(See [Chromatography \(621\), System Suitability](#).)**Mode:** LC**Detector:** UV 220 nm**Column:** 3.9-mm \times 30-cm; 10- μ m packing [L1](#)**Flow rate:** 1 mL/min**Injection volume:** 20 μ L**Run time:** NLT 3 times the retention time of guanfacine**System suitability****Sample:** Standard solution**Suitability requirements****Tailing factor:** NMT 2.0**Relative standard deviation:** NMT 2.0%**Analysis****Samples:** Standard solution and Sample solution

Calculate the percentage of the labeled amount of guanfacine ($C_9H_9Cl_2N_3O$) dissolved:

$$\text{Result} = (r_U/r_S) \times C_S \times V \times (M_{r1}/M_{r2}) \times (1/L) \times 100$$

 r_U = peak response of guanfacine from the *Sample solution* r_S = peak response of guanfacine from the *Standard solution* C_S = concentration of [USP Guanfacine Hydrochloride RS](#) in the *Standard solution* (mg/mL) V = volume of *Medium*, 500 mL M_{r1} = molecular weight of guanfacine, 246.09 M_{r2} = molecular weight of guanfacine hydrochloride, 282.55 L = label claim (mg/Tablet)**Tolerances:** NLT 80% (Q) of the labeled amount of guanfacine ($C_9H_9Cl_2N_3O$) is dissolved.

- [UNIFORMITY OF DOSAGE UNITS \(905\)](#): Meet the requirements

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in tight, light-resistant containers.
- **LABELING:** When more than one *Dissolution* test is given, the labeling states the *Dissolution* test used only if *Test 1* is not used.
- [USP REFERENCE STANDARDS \(11\)](#)

[USP Guanfacine Hydrochloride RS](#)Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
GUANFACINE TABLETS	Documentary Standards Support	SM22020 Small Molecules 2

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 27(4)

Current DocID: GUID-0445B0E4-AB6E-4955-B258-41AD7BF0AB7E_3_en-US**DOI: https://doi.org/10.31003/USPNF_M36120_03_01****DOI ref: [xrxfq](#)**