

Status: Currently Official on 15-Feb-2025

Official Date: Official as of 01-Nov-2022

Document Type: USP Monographs

DocId: GUID-29D35501-C8BF-4202-A356-56C85BBF4A55_4_en-US

DOI: https://doi.org/10.31003/USPNF_M5368_04_01

DOI Ref: z45a7

© 2025 USPC

Do not distribute

Guanfacine Extended-Release Tablets

To view the Notice from the Expert Committee that posted in conjunction with this accelerated revision, please click

<https://www.uspnf.com/rb-guanfacine-ert-20221028>.

DEFINITION

Guanfacine Extended-Release Tablets contain an amount of guanfacine hydrochloride equivalent to NLT 90.0% and NMT 110.0% of the labeled amount of guanfacine ($C_9H_9Cl_2N_3O$).

IDENTIFICATION

- **A.** The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.
- **B.** The UV spectrum of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.

ASSAY

• PROCEDURE

Buffer: 20 mM [sodium bicarbonate](#) and 10 mM [tetrabutylammonium phosphate](#) prepared as follows. For each liter, dissolve 1.68 g of [sodium bicarbonate](#) and 3.39 g of [tetrabutylammonium phosphate](#) in 970 mL of [water](#). Adjust with 5 N [sodium hydroxide](#) to a pH of 10.0. Dilute with [water](#) to volume.

Mobile phase: [Acetonitrile](#) and **Buffer** (17:83)

Standard solution: 0.023 mg/mL of [USP Guanfacine Hydrochloride RS](#) in **Mobile phase**

Sample solution: Nominally 0.02 mg/mL of guanfacine prepared as follows. Transfer a portion of coarsely powdered Tablets (NLT 20) to an appropriate volumetric flask as directed in [Table 1](#). Add 50% of the flask volume of **Mobile phase**, sonicate for 10 min, and shake mechanically for 1 h. [NOTE—The sonicator should be kept cold with ice to maintain a temperature below 25°.] Repeat the steps of the sonication/shaking sequence two additional times with an additional sonication of 10 min at the end. [NOTE—An additional 1 h of shaking and 10 min of sonication may be needed if the sample is not fully dissolved.] Dilute with **Mobile phase** to volume. Centrifuge a portion of this solution for 10 min and use the supernatant. [NOTE—The use of a centrifuge speed of NLT 2500 rpm may be suitable.]

Table 1

Tablet Strength (mg)	Quantity Equivalent to Guanfacine To Be Transferred (mg)	Volumetric Flask Size (mL)	Nominal Concentration of Guanfacine (mg/mL)
1	1	50	0.02
2	2	100	0.02
3	4	200	0.02
4	4	200	0.02

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 220 nm. For *Identification B*, use a diode array detector in the range of 200–400 nm.

Column: 4.6-mm × 15-cm; 5-μm packing [L1](#)

Temperatures

Autosampler: 4°

Column: 27°

Flow rate: 1 mL/min

Injection volume: 100 μ L**Run time:** NLT 1.8 times the retention time of guanfacine**System suitability****Sample:** Standard solution**Suitability requirements****Tailing factor:** NMT 2.0**Relative standard deviation:** NMT 2.0%**Analysis****Samples:** Standard solution and Sample solutionCalculate the percentage of the labeled amount of guanfacine ($C_9H_9Cl_2N_3O$) in the portion of Tablets taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times (M_{r1}/M_{r2}) \times 100$$

 r_U = peak response of guanfacine from the Sample solution r_S = peak response of guanfacine from the Standard solution C_S = concentration of [USP Guanfacine Hydrochloride RS](#) in the Standard solution (mg/mL) C_U = nominal concentration of guanfacine in the Sample solution (mg/mL) M_{r1} = molecular weight of guanfacine, 246.09 M_{r2} = molecular weight of guanfacine hydrochloride, 282.55**Acceptance criteria:** 90.0%–110.0%**PERFORMANCE TESTS****Change to read:**

- [Dissolution \(711\)](#).

Test 1

Medium: Hydrochloric acid buffer, pH 2.2; 900 mL prepared as follows. For each liter, mix 250 mL of 0.2 M [potassium chloride](#) with 39 mL of 0.2 N [hydrochloric acid](#). Dilute with [water](#) to volume.

Apparatus 2: 75 rpm with suitable sinkers**Times:** 1, 4, 8, and 20 h

Buffer: 20 mM [sodium bicarbonate](#), prepared as follows. For each liter, dissolve 1.68 g of [sodium bicarbonate](#) in 970 mL of [water](#), and adjust with 5 N [sodium hydroxide](#) to a pH of 10.0. Dilute with [water](#) to volume.

Mobile phase: [Acetonitrile](#) and **Buffer** (25:75)**Standard stock solution:** 0.23 mg/mL of [USP Guanfacine Hydrochloride RS](#) in **Mobile phase****Standard solution:** 0.0023 mg/mL of [USP Guanfacine Hydrochloride RS](#) in **Medium** from **Standard stock solution****Sample solution:** Pass a portion of the solution under test through a suitable filter at the time points specified.**Chromatographic system**(See [Chromatography \(621\), System Suitability](#).)**Mode:** LC**Detector:** UV 220 nm**Column:** 4.6-mm \times 15-cm; 5- μ m packing [L1](#)**Flow rate:** 1.2 mL/min**Injection volume:** 20 μ L**Run time:** NLT 1.4 times the retention time of guanfacine**System suitability****Sample:** Standard solution**Suitability requirements****Tailing factor:** NMT 2.0**Relative standard deviation:** NMT 2.0%**Analysis****Samples:** Standard solution and Sample solutionCalculate the concentration of guanfacine ($C_9H_9Cl_2N_3O$) in the sample withdrawn from the vessel at each time point (i):

$$\text{Result} = (r_U/r_S) \times C_S \times (M_{r1}/M_{r2})$$

r_U = peak response of guanfacine from the *Sample solution*

r_S = peak response of guanfacine from the *Standard solution*

C_S = concentration of [USP Guanfacine Hydrochloride RS](#) in the *Standard solution* (mg/mL)

M_{r1} = molecular weight of guanfacine, 246.09

M_{r2} = molecular weight of guanfacine hydrochloride, 282.55

Calculate the percentage of the labeled amount of guanfacine ($C_9H_9Cl_2N_3O$) dissolved at each time point (i):

$$\text{Result}_1 = C_1 \times V \times (1/L) \times 100$$

$$\text{Result}_2 = \{[C_2 \times (V - V_S)] + (C_1 \times V_S)\} \times (1/L) \times 100$$

$$\text{Result}_3 = \{[C_3 \times [V - (2 \times V_S)]] + [(C_2 + C_1) \times V_S]\} \times (1/L) \times 100$$

$$\text{Result}_4 = \{[C_4 \times [V - (3 \times V_S)]] + [(C_3 + C_2 + C_1) \times V_S]\} \times (1/L) \times 100$$

C_i = concentration of guanfacine in the portion of the sample withdrawn at the specified time point (i) (mg/mL)

V = volume of *Medium*, 900 mL

L = label claim (mg/Tablet)

V_S = volume of the *Sample solution* withdrawn at each time point (i) (mL)

Tolerances: See [Table 2](#).

Table 2

Time Point (i)	Time (h)	Amount Dissolved (%)
1	1	13–33
2	4	37–57
3	8	57–77
4	20	NLT 80

The percentages of the labeled amount of guanfacine ($C_9H_9Cl_2N_3O$) dissolved at the times specified conform to [Dissolution \(711\)](#),

[Acceptance Table 2](#).

Test 2: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 2*.

Medium: Hydrochloric acid buffer, pH 2.2 (3.73 g/L of [potassium chloride](#) in [water](#). Adjust with [hydrochloric acid](#) to a pH of 2.2.); 900 mL, deaerated

Apparatus 2: 75 rpm with wire helix sinker

Times: 1, 4, 9, and 15 h

Solution A: 1 g/L of [sodium dodecyl sulfate](#) and 0.1% of [phosphoric acid](#) in [water](#) prepared as follows. Dissolve 1 g of [sodium dodecyl sulfate](#) in 1000 mL of [water](#). Add 1 mL of [phosphoric acid](#) to the resulting solution.

Mobile phase: [Acetonitrile](#) and *Solution A* (50:50)

Standard stock solution: 0.2525 mg/mL of [USP Guanfacine Hydrochloride RS](#) in [methanol](#)

Standard solution: ($L/900 \times 1.15$) mg/mL of [USP Guanfacine Hydrochloride RS](#) prepared by diluting *Standard stock solution* with *Medium*, where L is the label claim in mg/Tablet.

Sample solution: At the times specified, withdraw a known volume of the solution under test. Pass through a suitable filter.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 220 nm**Column:** 4.6-mm × 15-cm; 5 µm packing [L7](#)**Flow rate:** 1 mL/min**Injection volume:** 50 µL**Run time:** NLT 1.5 times the retention time of guanfacine**System suitability****Sample:** Standard solution**Suitability requirements****Tailing factor:** NMT 1.5**Relative standard deviation:** NMT 2.0%**Analysis****Samples:** Standard solution and Sample solutionCalculate the concentration of guanfacine ($C_9H_9Cl_2N_3O$) in the sample withdrawn from the vessel at each time point (i):

$$\text{Result} = (r_U/r_S) \times C_S \times (M_{r1}/M_{r2})$$

 r_U = peak response of guanfacine from the Sample solution r_S = peak response of guanfacine from the Standard solution C_S = concentration of [USP Guanfacine Hydrochloride RS](#) in the Standard solution (mg/mL) M_{r1} = molecular weight of guanfacine, 246.09 M_{r2} = molecular weight of guanfacine hydrochloride, 282.55Calculate the percentage of the labeled amount of guanfacine ($C_9H_9Cl_2N_3O$) dissolved at each time point (i):

$$\text{Result}_1 = C_1 \times V \times (1/L) \times 100$$

$$\text{Result}_2 = \{[C_2 \times (V - V_S)] + (C_1 \times V_S)\} \times (1/L) \times 100$$

$$\text{Result}_3 = \{[C_3 \times [V - (2 \times V_S)]] + [(C_2 + C_1) \times V_S]\} \times (1/L) \times 100$$

$$\text{Result}_4 = \{[C_4 \times [V - (3 \times V_S)]] + [(C_3 + C_2 + C_1) \times V_S]\} \times (1/L) \times 100$$

 C_i = concentration of guanfacine in the portion of the sample withdrawn at the specified time point (i) (mg/mL) V = volume of Medium, 900 mL L = label claim (mg/Tablet) V_S = volume of the Sample solution withdrawn at each time point (i) (mL)**Tolerances:** See [Table 3](#) and [Table 4](#).**Table 3. For Tablets Labeled to Contain 1 mg**

Time Point (i)	Time (h)	Amount Dissolved (%)
1	1	NMT 30
2	4	40–60
3	9	70–90
4	15	NLT 85

Table 4. For Tablets Labeled to Contain 2, 3, and 4 mg

Time Point (<i>i</i>)	Time (h)	Amount Dissolved (%)
1	1	NMT 25
2	4	35–55
3	9	60–80
4	15	NLT 80

The percentages of the labeled amount of guanfacine ($C_9H_9Cl_2N_3O$) dissolved at the times specified conform to [Dissolution \(711\)](#).

[Acceptance Table 2](#).

▲ **Test 3:** If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 3*.

Medium: Hydrochloric acid buffer, pH 2.2 prepared as follows. Dissolve 3.72 g of [potassium chloride](#) and 0.66 mL of [hydrochloric acid](#) in 1000 mL of [water](#). Adjust with 1 N [hydrochloric acid](#) or 1 N [potassium hydroxide](#) to a pH of 2.2, if necessary; 900 mL.

Apparatus 2: 75 rpm with sinker (see [Dissolution \(711\)](#), [Figure 2a](#))

Times: 1, 4, 8, and 20 h

Buffer: 6.8 g/L of [potassium phosphate monobasic](#) in [water](#) prepared as follows. Dissolve 6.8 g of [potassium phosphate monobasic](#) in 1000 mL of [water](#) and add 5 mL of [triethylamine](#). Adjust with [phosphoric acid](#) to a pH of 3.0.

Mobile phase: [Acetonitrile](#) and **Buffer** (17:83)

Standard stock solution: 0.05 mg/mL of [USP Guanfacine Hydrochloride RS](#) in [methanol](#). Sonicate to dissolve, if necessary.

Standard solution: $(L/900 \times 1.15)$ mg/mL of [USP Guanfacine Hydrochloride RS](#) prepared by diluting **Standard stock solution** with **Medium**, where *L* is the label claim in mg/Tablet

Sample solution: At the times specified, withdraw a known volume of the solution under test and replace with an equal volume of **Medium**. Pass the solution under test through a suitable filter of 0.45-μm pore size, discarding the first few milliliters of filtrate.

Chromatographic system

(See [Chromatography \(621\)](#), [System Suitability](#).)

Mode: LC

Detector: UV 220 nm

Column: 4.6-mm × 10-cm; 5 μm packing [L1](#)

Column temperature: 30°

Flow rate: 1.5 mL/min

Injection volume: 100 μL

Run time: NLT 1.8 times the retention time of guanfacine

System suitability

Sample: *Standard solution*

Suitability requirements

Tailing factor: NMT 1.5

Relative standard deviation: NMT 2.0%

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the concentration (C_i) of guanfacine ($C_9H_9Cl_2N_3O$) in the sample withdrawn from the vessel at each time point (*i*):

$$\text{Result}_i = (r_U/r_S) \times C_S \times (M_{r1}/M_{r2})$$

r_U = peak response of guanfacine from the *Sample solution*

r_S = peak response of guanfacine from the *Standard solution*

C_S = concentration of [USP Guanfacine Hydrochloride RS](#) in the *Standard solution* (mg/mL)

M_{r1} = molecular weight of guanfacine, 246.09

M_{r2} = molecular weight of guanfacine hydrochloride, 282.55

Calculate the percentage of the labeled amount of guanfacine ($C_9H_9Cl_2N_3O$) dissolved at each time point (*i*):

$$\text{Result}_1 = C_1 \times V \times (1/L) \times 100$$

$$\text{Result}_2 = [(C_2 \times V) + (C_1 \times V_s)] \times (1/L) \times 100$$

$$\text{Result}_3 = \{(C_3 \times V) + [(C_2 + C_1) \times V_s]\} \times (1/L) \times 100$$

$$\text{Result}_4 = \{(C_4 \times V) + [(C_3 + C_2 + C_1) \times V_s]\} \times (1/L) \times 100$$

C_i = concentration of guanfacine in the portion of the sample withdrawn at time point i (mg/mL)

V = volume of *Medium*, 900 mL

L = label claim (mg/Tablet)

V_s = volume of the *Sample solution* withdrawn at each time point (i) and replaced with *Medium* (mL)

Tolerances: See [Table 5](#).

Table 5

Time Point (i)	Time (h)	Amount Dissolved (%)
1	1	15–35
2	4	40–60
3	8	60–80
4	20	NLT 80

The percentages of the labeled amount of guanfacine ($C_9H_9Cl_2N_3O$) dissolved at the times specified conform to [Dissolution \(711\)](#).

[Acceptance Table 2](#) ▲ (RB 1-Nov-2022)

- [UNIFORMITY OF DOSAGE UNITS \(905\)](#): Meet the requirements

IMPURITIES

Change to read:

- [ORGANIC IMPURITIES](#)

Buffer, Mobile phase, Sample solution, and Chromatographic system: Proceed as directed in the Assay.

Standard solution 1: Prepare as directed for the *Standard solution* in the Assay.

Standard solution 2: 0.023 mg/mL of [2,6-dichlorophenylacetic acid](#) in *Mobile phase*

System suitability solution: 0.046 µg/mL each of [USP Guanfacine Hydrochloride RS](#) and [2,6-dichlorophenylacetic acid](#) in *Mobile phase* from *Standard solution 1* and *Standard solution 2*

System suitability

Samples: *Standard solution 1* and *System suitability solution*

[**NOTE**—See ▲ [Table 6](#) ▲ (RB 1-Nov-2022) for the relative retention times.]

Suitability requirements

Resolution: NLT 4.0 between 2,6-dichlorophenylacetic acid and guanfacine, *System suitability solution*

Relative standard deviation: NMT 2.0%, *Standard solution 1*

Analysis

Samples: *Standard solution 1* and *Sample solution*

Calculate the percentage of 2,6-dichlorophenylacetic acid or any unspecified degradation product in the portion of Tablets taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times (M_{r1}/M_{r2}) \times (1/F) \times 100$$

r_U = peak response of 2,6-dichlorophenylacetic acid or any unspecified degradation product from the *Sample solution*

r_S = peak response of guanfacine from *Standard solution 1*

C_S = concentration of [USP Guanfacine Hydrochloride RS](#) in *Standard solution 1* (mg/mL)

C_U = nominal concentration of guanfacine in the *Sample solution* (mg/mL)

M_{r1} = molecular weight of guanfacine, 246.09 M_{r2} = molecular weight of guanfacine hydrochloride, 282.55 F = relative response factor (see ▲[Table 6](#)▲ (RB 1-Nov-2022))**Acceptance criteria:** See ▲[Table 6](#)▲ (RB 1-Nov-2022)▲**Table 6**▲ (RB 1-Nov-2022)

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
2,6-Dichlorophenylacetic acid	0.6	0.65	1.0
Guanfacine	1.0	—	—
Any unspecified degradation product	—	1.0	0.5
Total degradation products	—	—	1.5

ADDITIONAL REQUIREMENTS

- PACKAGING AND STORAGE:** Preserve in tight containers and store at controlled room temperature.
- LABELING:** When more than one *Dissolution* test is given, the labeling states the test used only if *Test 1* is not used.
- USP REFERENCE STANDARDS (11).**
[USP Guanfacine Hydrochloride RS](#)

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
GUANFACINE EXTENDED-RELEASE TABLETS	Documentary Standards Support	SM22020 Small Molecules 2

Chromatographic Database Information: [Chromatographic Database](#)**Most Recently Appeared In:**

Pharmacopeial Forum: Volume No. 46(2)

Current DocID: [GUID-29D35501-C8BF-4202-A356-56C85BBF4A55_4_en-US](#)**DOI:** https://doi.org/10.31003/USPNF_M5368_04_01**DOI ref:** [z45a7](#)