

Status: Currently Official on 15-Feb-2025  
Official Date: Official as of 01-Aug-2019  
Document Type: USP Monographs  
DocId: GUID-C478DE63-68CE-4365-88D9-0B881B5ABD37\_2\_en-US  
DOI: [https://doi.org/10.31003/USPNF\\_M35600\\_02\\_01](https://doi.org/10.31003/USPNF_M35600_02_01)  
DOI Ref: nk7ty

© 2025 USPC  
Do not distribute

## Glycopyrrolate Tablets

### DEFINITION

Glycopyrrolate Tablets contain NLT 93.0% and NMT 107.0% of the labeled amount of glycopyrrolate ( $C_{19}H_{28}BrNO_3$ ).

### IDENTIFICATION

- A. The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.

#### Add the following:

- ▲ B. The UV spectrum of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay. ▲ (USP 1-Aug-2019)

### ASSAY

#### Change to read:

##### • PROCEDURE

**Buffer solution:** Prepare a solution of 1.0 g of [sodium sulfate anhydrous](#) and 200 mg of [sodium 1-hexanesulfonate monohydrate](#) in 650 mL of [water](#). To this solution add 3.0 mL of [1 N sulfuric acid](#), and mix.

**Mobile phase:** [Acetonitrile](#), [methanol](#), and *Buffer solution* (20:15:65)

**Standard solution:** 0.1 mg/mL of [USP Glycopyrrolate RS](#) in *Mobile phase*

**Sample solution:** ▲ Nominally ▲ (USP 1-Aug-2019) 0.1 mg/mL of glycopyrrolate in *Mobile phase*. Prepare by transferring 10 Tablets to a suitable volumetric flask. Add *Mobile phase* to 50% of the volume of the flask, and sonicate for 10 min or until the Tablets disintegrate completely. Add *Mobile phase* to 75% of the volume of the flask, shake mechanically for 30 min, and dilute with *Mobile phase* to volume. Centrifuge a portion of the solution, and pass the supernatant through a suitable filter, discarding the first few milliliters of the filtrate.

### Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

**Mode:** LC

**Detector:** UV 222 nm. ▲ For *Identification B*, use a diode array detector in the range of 210–400 nm. ▲ (USP 1-Aug-2019)

**Column:** 4.6-mm × 15-cm; 5-μm packing [L1](#)

**Column temperature:** 40°

**Flow rate:** 1.2 mL/min

**Injection volume:** 50 μL

### System suitability

**Sample:** *Standard solution*

**Suitability requirements**

**Tailing factor:** NMT 2.0

**Relative standard deviation:** NMT 1.0%

### Analysis

**Samples:** *Standard solution* and *Sample solution*

Calculate the percentage of the labeled amount of glycopyrrolate ( $C_{19}H_{28}BrNO_3$ ) in the portion of Tablets taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

$r_U$  = peak response of glycopyrrolate from the *Sample solution*

$r_S$  = peak response of glycopyrrolate from the *Standard solution*

$C_S$  = concentration of [USP Glycopyrrolate RS](#) in the *Standard solution* (mg/mL)

$C_U$  = nominal concentration of glycopyrrolate in the *Sample solution* (mg/mL)

**Acceptance criteria:** 93.0%–107.0%

## PERFORMANCE TESTS

**Change to read:**

- [Dissolution \(711\)](#).

**Medium:** Water; 500 mL

**Apparatus 1:** 100 rpm

**Time:** 45 min

**Buffer solution:** 1.0 g of [sodium sulfate anhydrous](#) and 200 mg of [sodium 1-pentanesulfonate](#) in 620 mL of [water](#)

**Mobile phase:** [Acetonitrile](#), [methanol](#), [Buffer solution](#), and [1 N sulfuric acid](#) (200:180:620:3)

**Standard stock solution:** 0.2 mg/mL of [USP Glycopyrrolate RS](#) in *Medium*. A small volume of [methanol](#), not exceeding 20% of the final volume, can be used to solubilize glycopyrrolate.

**Standard solution:** ( $L/500$ ) mg/mL of glycopyrrolate in *Medium* from the *Standard stock solution*, where  $L$  is the label claim in mg/Tablet.

Prepare this solution fresh, and refrigerate immediately at 5°.

**Sample solution:** Pass a portion of the solution under test through a suitable filter, discarding the first few milliliters of the filtrate. Refrigerate the samples at 5°.

### Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

**Mode:** LC

**Detector:** UV 210 nm

**Column:** 4.6-mm × 15-cm; 5-μm packing [L1](#)

### Temperatures

**Autosampler:** 5°

**Column:** 40°

**Flow rate:** 1.2 mL/min

**Injection volume:** 80 μL

### System suitability

**Sample:** *Standard solution*

**Suitability requirements**

**Tailing factor:** NMT 2.0

**Relative standard deviation:** NMT 2.0%

### Analysis

**Samples:** *Standard solution* and *Sample solution*

Calculate the ▲ (USP 1-Aug-2019) percentage of the labeled amount of glycopyrrolate dissolved:

$$\text{Result} = (r_U/r_S) \times (C_S/L) \times V \times 100$$

$r_U$  = peak response from the *Sample solution*

$r_S$  = peak response from the *Standard solution*

$C_S$  = concentration of ▲ [USP Glycopyrrolate RS](#) ▲ (USP 1-Aug-2019) in the *Standard solution* (mg/mL)

$L$  = label claim (mg/Tablet)

$V$  = volume of *Medium*, 500 mL

**Tolerances:** NLT 75% (Q) of the labeled amount of glycopyrrolate ( $C_{19}H_{28}BrNO_3$ ) is dissolved.

- [Uniformity of Dosage Units \(905\)](#): Meet the requirements

## IMPURITIES

**Change to read:**

- [Organic Impurities](#)

**Buffer solution:** Prepare a solution of 1.0 g of [sodium sulfate anhydrous](#) and 200 mg of [sodium 1-hexanesulfonate monohydrate](#) in 650 mL of [water](#). To this solution add 3.0 mL of [1 N sulfuric acid](#), and mix.

**Diluent:** Prepare a solution of 1.0 g of [sodium sulfate anhydrous](#), 6.8 g of [monobasic potassium phosphate](#), and 200 mg of [sodium 1-hexanesulfonate monohydrate](#) in 650 mL of [water](#). To this solution add 3.0 mL of [1 N sulfuric acid](#), 150 mL of [methanol](#), and 200 mL of [acetonitrile](#), and mix. Adjust with [phosphoric acid](#) to a pH of 2.8.

**Solution A:** [Acetonitrile](#), [methanol](#), and *Buffer solution* (20:15:65)

**Solution B:** [Acetonitrile](#), [methanol](#), and *Buffer solution* (50:15:35)

**Mobile phase:** See [Table 1](#).

**Table 1**

| Time<br>(min) | Solution A<br>(%) | Solution B<br>(%) |
|---------------|-------------------|-------------------|
| 0             | 100               | 0                 |
| 10            | 100               | 0                 |
| 25            | 10                | 90                |
| 35            | 10                | 90                |
| 37            | 100               | 0                 |
| 45            | 100               | 0                 |

**Standard solution:** 0.0015 mg/mL each of [USP Glycopyrrolate RS](#), [USP Glycopyrrolate Related Compound B RS](#), and [USP Glycopyrrolate Related Compound C RS](#) in *Diluent*. Sonicate, if necessary, to facilitate dissolution.

**Sample solution:** ▲Nominally▲ (USP 1-Aug-2019) 0.5 mg/mL of glycopyrrolate in *Diluent*. Prepare by transferring the equivalent of 25 mg of glycopyrrolate from a portion of NLT 20 powdered Tablets to a 50-mL volumetric flask. Add 30 mL of *Diluent*, sonicate for 10 min, shake mechanically for 30 min, and dilute with *Diluent* to volume. Centrifuge a portion of the solution, and pass the supernatant through a suitable filter, discarding the first few milliliters of the filtrate.

#### Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

**Mode:** LC

**Detector:** UV 222 nm

**Column:** 4.6-mm × 15-cm; 5-μm packing [L1](#)

**Column temperature:** 40°

**Flow rate:** 1 mL/min

**Injection volume:** 50 μL

#### System suitability

**Sample:** *Standard solution*

#### Suitability requirements

**Resolution:** NLT 2.0 between glycopyrrolate and glycopyrrolate related compound B

**Tailing factor:** NMT 2.0 for the glycopyrrolate peak

**Relative standard deviation:** NMT 6.0% for the glycopyrrolate and glycopyrrolate related compound C peaks

#### Analysis

**Samples:** *Standard solution* and *Sample solution*

Calculate the percentage of glycopyrrolate related compound C in the portion of Tablets taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

$r_u$  = peak response of glycopyrrolate related compound C from the *Sample solution*

$r_s$  = peak response of glycopyrrolate related compound C from the *Standard solution*

$C_s$  = concentration of [USP Glycopyrrolate Related Compound C RS](#) in the *Standard solution* (mg/mL)

$C_u$  = nominal concentration of glycopyrrolate in the *Sample solution* (mg/mL)

Calculate the percentage of any other individual impurity in the portion of Tablets taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

 $r_U$  = peak response of any individual impurity from the *Sample solution* $r_S$  = peak response of glycopyrrolate from the *Standard solution* $C_S$  = concentration of [USP Glycopyrrolate RS](#) in the *Standard solution* (mg/mL) $C_U$  = nominal concentration of glycopyrrolate in the *Sample solution* (mg/mL)**Acceptance criteria:** See [Table 2](#).**Table 2**

| Name                                  | Relative Retention Time | Acceptance Criteria, NMT (%) |
|---------------------------------------|-------------------------|------------------------------|
| 5-Nitroisophthalic acid <sup>a</sup>  | 0.45                    | — <sup>b</sup>               |
| Glycopyrrolate                        | 1.00                    | —                            |
| Glycopyrrolate base <sup>c</sup>      | 1.14                    | — <sup>b</sup>               |
| Cyclopentylmandelic acid <sup>d</sup> | 2.68                    | 0.5                          |
| Any other individual impurity         | —                       | 0.2                          |
| Total impurities                      | —                       | 1.2                          |

<sup>a</sup> Glycopyrrolate related compound A.<sup>b</sup> Disregard the peaks due to 5-nitroisophthalic acid and glycopyrrolate base, because these are process impurities and are controlled in the drug substance monograph.<sup>c</sup> Glycopyrrolate related compound B.<sup>d</sup> Glycopyrrolate related compound C.**ADDITIONAL REQUIREMENTS**

- **PACKAGING AND STORAGE:** Preserve in tight containers. Store at controlled room temperature.

**Change to read:**

- [USP REFERENCE STANDARDS \(11\)](#).

[USP Glycopyrrolate RS](#)[USP Glycopyrrolate Related Compound B RS](#)

▲[NOTE—May be available as a free base or a hydrochloride salt.]▲ (USP 1-Aug-2019)

1-Methylpyrrolidin-3-yl-2-cyclopentyl-2-hydroxy-2-phenylacetate.

 $C_{18}H_{25}NO_3$  303.40▲1-Methylpyrrolidin-3-yl 2-cyclopentyl-2-hydroxy-2-phenylacetate hydrochloride.  $C_{18}H_{25}NO_3 \cdot HCl$  339.86▲ (USP 1-Aug-2019)[USP Glycopyrrolate Related Compound C RS](#)

2-Cyclopentyl-2-hydroxy-2-phenylacetic acid.

 $C_{13}H_{16}O_3$  220.26**Auxiliary Information** - Please [check for your question in the FAQs](#) before contacting USP.

| Topic/Question         | Contact                                       | Expert Committee          |
|------------------------|-----------------------------------------------|---------------------------|
| GLYCOPYRROLATE TABLETS | <a href="#">Documentary Standards Support</a> | SM32020 Small Molecules 3 |

**Most Recently Appeared In:**

Pharmacopeial Forum: Volume No. PF 44(2)

**Current DocID: GUID-C478DE63-68CE-4365-88D9-0B881B5ABD37\_2\_en-US**

**DOI: [https://doi.org/10.31003/USPNF\\_M35600\\_02\\_01](https://doi.org/10.31003/USPNF_M35600_02_01)**

**DOI ref: nk7ty**

OFFICIAL