

Status: Currently Official on 15-Feb-2025
 Official Date: Official as of 01-May-2022
 Document Type: USP Monographs
 DocId: GUID-8B0E2BB6-E683-4FB9-BE0D-C80C20514055_6_en-US
 DOI: https://doi.org/10.31003/USPNF_M34618_06_01
 DOI Ref: t5dm7

© 2025 USPC
 Do not distribute

Galantamine Hydrobromide

$C_{17}H_{21}NO_3 \cdot HBr$ 368.27

6H-Benzofuro[3a,3,2-ef][2]benzazepin-6-ol, 4a,5,9,10,11,12-hexahydro-3-methoxy-11-methyl-, hydrobromide, (4aS,6R,8aS)-;
 (4aS,6R,8aS)-3-Methoxy-11-methyl-4a,5,9,10,11,12-hexahydro-6H-benzofuro[3a,3,2-ef][2]benzazepin-6-ol hydrobromide;
 (4aS,6R,8aS)-3-Methoxy-11-methyl-4a,5,9,10,11,12-hexahydro-6H-benzo[2,3]benzofuro[4,3-cd]azepin-6-ol hydrobromide CAS RN®: 1953-04-4.

DEFINITION

Galantamine Hydrobromide contains NLT 98.0% and NMT 102.0% of galantamine hydrobromide ($C_{17}H_{21}NO_3 \cdot HBr$), calculated on the dried basis.

IDENTIFICATION

- A. [SPECTROSCOPIC IDENTIFICATION TESTS \(197\), Infrared Spectroscopy](#): 197K
 [NOTE—Specimens are to be prepared using undried [USP Galantamine Hydrobromide RS](#) and the test article.]
- B. The retention time of the major peak of the *Sample solution* corresponds to that of the *System suitability solution*, as obtained in the Assay.
- C. [IDENTIFICATION TESTS—GENERAL \(191\), Chemical Identification Tests, Bromide](#)

Sample solution: 7 mg/mL of Galantamine Hydrobromide in [water](#)

Acceptance criteria: Meets the requirements of test B

ASSAY

• PROCEDURE

Diluent: [Methanol](#) and [water](#) (5:95)

Buffer: 0.79 g/L of [dibasic sodium phosphate dihydrate](#) and 2.46 g/L of [monobasic sodium phosphate anhydrous](#) in [water](#)

Solution A: [Methanol](#) and [Buffer](#) (5:95)

Solution B: [Acetonitrile](#)

Mobile phase: See [Table 1](#).

Table 1

Time (min)	Solution A (%)	Solution B (%)
0	100	0
6.0	100	0
20.0	95	5
35.0	85	15
50.0	80	20

Time (min)	Solution A (%)	Solution B (%)
51.0	40	60
55.0	40	60
56.0	100	0
60.0	100	0

System suitability solution: 1 mg/mL of [USP Galantamine Hydrobromide Related Compounds Mixture RS](#) in *Diluent*

Standard solution: 1.0 mg/mL of [USP Galantamine Hydrobromide RS](#) in *Diluent*

Sample solution: 1.0 mg/mL of Galantamine Hydrobromide in *Diluent*

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 230 nm

Column: 4.6-mm × 10-cm; 3.5-μm packing [L1](#)

Column temperature: 55°

Flow rate: 1.5 mL/min

Injection volume: 20 μL

System suitability

Samples: System suitability solution and Standard solution

[NOTE—For relative retention times, see [Table 2](#).]

Suitability requirements

Resolution: NLT 4.5 between galantamine and 6S-galantamine, System suitability solution

Tailing factor: NMT 2.0 for galantamine, System suitability solution

Relative standard deviation: NMT 0.73%, Standard solution

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of galantamine hydrobromide ($C_{17}H_{21}NO_3 \cdot HBr$) in the portion of Galantamine Hydrobromide taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_u = peak response from the Sample solution

r_s = peak response from the Standard solution

C_s = concentration of [USP Galantamine Hydrobromide RS](#) in the Standard solution (mg/mL)

C_u = concentration of Galantamine Hydrobromide in the Sample solution (mg/mL)

Acceptance criteria: 98.0%–102.0% on the dried basis

IMPURITIES

- [RESIDUE ON IGNITION \(281\)](#): NMT 0.1%

Delete the following:

- ▲ **LIMIT OF PALLADIUM:** Proceed as directed below or in [Elemental Impurities—Procedures \(233\)](#).

[NOTE—Perform this test only if palladium is a known inorganic impurity of the manufacturing process.]

Standard stock solution: 20 mg/L of palladium reference stock solution (NIST traceable) in [water](#)

Aqua regia: Under a hood, carefully mix [hydrochloric acid](#) and [nitric acid](#) (3:1).

[NOTE—To obtain each of the required Standard solutions, it is recommended that the required volume of Standard stock solution be mixed with a volume of *Aqua regia* equivalent to 5% of the final volume, followed by [water](#).]

Standard solution A: 0.2 mg/L of palladium from the Standard stock solution in [water](#)

Standard solution B: 1.0 mg/L of palladium from the Standard stock solution in [water](#)

Standard solution C: 2.0 mg/L of palladium from the Standard stock solution in [water](#)

System suitability solution: Prepare a solution having a known concentration of 1.6 mg/L of palladium, as directed for the Standard solutions.

Sample solution: Weigh 1 g of Galantamine Hydrobromide. Transfer the sample to an appropriate digestion system, and digest using appropriate acids (e.g., [nitric acid](#) or mixtures of [nitric acid](#) and [sulfuric acid](#) and mixtures of [nitric acid](#) and [hydrogen peroxide](#)). After digestion, heat to dryness. Add 0.5 mL of *Aqua regia* and 2 mL of [water](#). Warm gently to dissolve any residue. Allow to cool. Transfer quantitatively to a 10-mL volumetric flask, and dilute with [water](#) to volume.

Digestion blank solution: Prepare this solution following the procedure for the *Sample solution*, without the test article.

Instrumental conditions

(See [Atomic Absorption Spectroscopy \(852\)](#).)

Mode: Atomic absorption spectroscopy (flame)

Analytical wavelength: 247.6 nm (0.2-nm slit width)

Lamp: Palladium hollow-cathode

Blank solution: Dilute 5 mL of *Aqua regia* with [water](#) to 100 mL.

System suitability

Samples: Standard solution A, Standard solution B, Standard solution C, System suitability solution, and Blank solution

Using the Standard solutions and Blank solution, construct a calibration curve.

Suitability requirements

Correlation coefficient: NLT 0.99

Recovery: 87.5%–112.5%, System suitability solution. [NOTE—Recovery is calculated using the calibration curve.]

Analysis

Samples: Sample solution and Digestion blank solution

Calculate the concentration of palladium in the Sample solution, using the calibration curve, corrected for the Digestion blank solution and the sample weight. Calculate the amount of palladium in the Galantamine Hydrobromide taken to prepare the Sample solution.

Acceptance criteria: NMT 10 ppm▲ (USP 1-May-2022)

• ORGANIC IMPURITIES

Diluent, Buffer, Solution A, Solution B, Mobile phase, System suitability solution, and Chromatographic system: Proceed as directed in the Assay.

Sensitivity solution: 0.5 µg/mL of [USP Galantamine Hydrobromide RS](#) in Diluent

Standard solution: 5.0 µg/mL of [USP Galantamine Hydrobromide RS](#) in Diluent

Sample solution: 1000 µg/mL of Galantamine Hydrobromide in Diluent

System suitability

Samples: System suitability solution, Sensitivity solution, and Standard solution

[NOTE—For relative retention times, see [Table 2](#).]

Suitability requirements

Resolution: NLT 4.5 between galantamine and 6S-galantamine, System suitability solution

Relative standard deviation: NMT 5.0%, Standard solution

Signal-to-noise ratio: NLT 10, Sensitivity solution

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of each impurity in the portion of Galantamine Hydrobromide taken, on the dried basis:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times (1/F) \times [100/(100 - LOD)]$$

r_U = peak response of each impurity from the Sample solution

r_S = peak response of galantamine from the Standard solution

C_S = concentration of [USP Galantamine Hydrobromide RS](#) in the Standard solution (µg/mL)

C_U = concentration of the Sample solution (µg/mL)

F = relative response factor (see [Table 2](#))

LOD = loss on drying (%)

Acceptance criteria: See [Table 2](#). Disregard the bromide peak near the void volume. The reporting threshold is 0.05%.

Table 2

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
N-Desmethyl galantamine ^a	0.29	1.2	0.6
O-Desmethyl galantamine ^b	0.35	1.1	0.20
Galantamine N-oxide ^c	0.65	0.96	0.20
Dihydrogalantamine ^d	0.82	0.81	0.35
Galantamine	1.00	1.0	—
6S-Galantamine ^e	1.16	0.95	0.20
Narwedine ^f	1.64	1.9	0.15
Anhydrogalantamine ^g	2.05	1.2	0.40
Any unspecified impurity	—	1.0	0.10
Total impurities ^h	—	—	1.0

^a (4aS,6R,8aS)-3-Methoxy-4a,5,9,10,11,12-hexahydro-6H-benzo[2,3]benzofuro[4,3-cd]azepin-6-ol.

^b (4aS,6R,8aS)-11-Methyl-4a,5,9,10,11,12-Hexahydro-6H-benzo[3a,3,2-ef][2]benzazepin-3,6-diol.

^c (4aS,6R,8aS)-6-Hydroxy-3-methoxy-11-methyl-4a,5,9,10,11,12-hexahydro-6H-benzo[2,3]benzofuro[4,3-cd]azepine 11-oxide.

^d (4aS,6R,8aS)-3-Methoxy-11-methyl-4a,5,7,8,9,10,11,12-octahydro-6H-benzo[2,3]benzofuro[4,3-cd]azepin-6-ol.

^e (4aS,6S,8aS)-3-Methoxy-11-methyl-4a,5,9,10,11,12-hexahydro-6H-benzo[2,3]benzofuro[4,3-cd]azepin-6-ol.

^f (4aS,8aS)-3-Methoxy-11-methyl-4a,5,9,10,11,12-hexahydro-6H-benzo[2,3]benzofuro[4,3-cd]azepin-6-one. This is a process impurity that may be found in Galantamine Hydrobromide isolated from a natural source.

^g (4aS,8aS)-3-Methoxy-11-methyl-9,10,11,12-tetrahydro-4aH-benzo[2,3]benzofuro[4,3-cd]azepine.

^h Do not include the 4R,6S,8R isomer.

Change to read:

• **LIMIT OF THE 4R,6S,8R ISOMER**

[NOTE—If Galantamine Hydrobromide is not isolated from a natural source, perform either *Procedure 1* or *Procedure 2*.]

Procedure 1

Background electrolyte solution: 8.9 g/L of [dibasic sodium phosphate dihydrate](#) in [water](#). Adjust with [phosphoric acid](#) to a pH of 3.0.

Run buffer: 19.6 g/L of [alpha-cyclodextrin hydrate](#) in *Background electrolyte solution*. Pass the solution through a filter of 0.22-μm pore size.

Standard solution: 5 μg/mL of [USP Galantamine Hydrobromide Racemic RS](#) in [water](#). Pass the solution through a filter of 0.22-μm pore size, discarding the first 8 mL.

Sample solution: 500 μg/mL of Galantamine Hydrobromide in [water](#). Pass the solution through a filter of 0.22-μm pore size, discarding the first 8 mL.

Capillary rinse procedure: Use separate *Run buffer* vials for the capillary rinse and sample analysis. Proceed as directed in [Table 3](#).

Table 3

Step #	Solution/Gas	Time (min)
1	0.1 N sodium hydroxide VS	15
2	Water	10

Step #	Solution/Gas	Time (min)
3	Suitable gas	5

[**NOTE**—If a new or dry capillary is being used, rinse with [1 N sodium hydroxide VS](#) for 30 min, followed by rinsing with [water](#) for 15 min. Dry it with air or nitrogen for 10 min.]

Electrophoretic system

Mode: CE

Detector: UV 214 nm

Column: 75- μ m \times 60-cm uncoated fused silica

Column temperature: 20°

Applied voltage: 250 V/cm, positive polarity

Run time: 35 min

System suitability

Sample: Standard solution. [**NOTE**—For the purpose of identification, the 4S,6R,8S isomer elutes at an approximate relative migration time (RMT) of 1.00, and the 4R,6S,8R isomer elutes at an RMT of about 1.05.]

Measure the migration times and peak responses: the migration times for the 4R,6S,8R isomer in the electropherograms of the *Sample solution* should not deviate by more than 5% of the migration time for the same component in the electropherogram of the *Standard solution*.

Suitability requirements

Resolution: NLT 2.5 between the two enantiomers

Relative standard deviation: NMT 10% for the 4R,6S,8R isomer peak

Analysis

Samples: Standard solution and Sample solution

Injection: [**NOTE**—Rinse the capillary between injections as follows: [water](#) for 5 min, followed by *Run buffer* for 5 min. Rinse times are based on a rinse pressure of 1.4 bar.]

Sample solution: 34.5 mbar for 4 s

Run buffer: 6.9 mbar for 5 s

Calculate the corrected peak responses:

$$\text{Result} = (r/m)$$

r = peak response

m = migration time of the peak (min)

Calculate the limit of the 4R,6S,8R isomer, in percent, in the portion of Galantamine Hydrobromide taken:

$$\text{Result} = (r_{cu}/r_{cs}) \times (C_s/C_u) \times P \times 100$$

r_{cu} = average corrected peak responses of the 4R,6S,8R isomer from the *Sample solution*

r_{cs} = average corrected peak responses of the 4R,6S,8R isomer from the *Standard solution*

C_s = concentration of [USP Galantamine Hydrobromide Racemic RS](#) in the *Standard solution* (μ g/mL)

C_u = concentration of Galantamine Hydrobromide in the *Sample solution* (μ g/mL)

P = chiral purity of [USP Galantamine Hydrobromide Racemic RS](#), 0.5

Acceptance criteria: NMT 0.10% of the 4R,6S,8R isomer

Procedure 2

[**NOTE**—Use low-actinic glassware and vials. It is recommended that precautions be taken to protect all solutions from light.]

Buffer: 8.2 g/L of [anhydrous sodium acetate](#) in [water](#)

Mobile phase: [Acetonitrile](#) and *Buffer* (2:98). Adjust with [acetic acid](#) to a pH of 6.5.

System suitability solution: 2.4 μ g/mL of [USP Galantamine Hydrobromide Racemic RS](#) in [water](#). [**NOTE**—This solution will contain about 1.2 μ g/mL of the 4R,6S,8R isomer.]

Sample solution: 1.2 mg/mL of Galantamine Hydrobromide in [water](#)

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)**Mode:** LC**Detector:** UV 230 nm**Column:** 4.0-mm × 15-cm; 5-μm packing [L41](#). [NOTE—Alternatively, a 2.0-mm × ▲15-cm▲ (USP 1-May-2022) column containing 5-μm packing [L41](#) can be used with a recommended flow rate of about 0.2 mL/min.]**Flow rate:** 0.8 mL/min**Injection volume:** 5 μL**Run time:** NLT 3 times the retention time of galantamine**System suitability****Sample:** System suitability solution. [NOTE—The 4R,6S,8R isomer elutes first as the minor peak followed by the major peak due to galantamine (which is the same as the 4S,6S,8S isomer).]**Suitability requirements****Resolution:** NLT 3.0 between the 4R,6S,8R isomer and galantamine peaks**Relative standard deviation:** NMT 5.0% for the 4R,6S,8R isomer peak**Analysis****Sample:** Sample solution

Calculate the percentage of 4R,6S,8R isomer in the portion of Galantamine Hydrobromide taken:

$$\text{Result} = [r_{4R,6S,8R}/(r_{4R,6S,8R} + r_{4S,6R,8S})] \times 100$$

 $r_{4R,6S,8R}$ = peak area of the 4R,6S,8R isomer from the Sample solution $r_{4S,6R,8S}$ = peak area of galantamine from the Sample solution**Acceptance criteria:** NMT 0.10% of the 4R,6S,8R isomer**SPECIFIC TESTS**

- [Loss on Drying \(731\)](#)

Analysis: Dry at 105° for 4 h.**Acceptance criteria:** NMT 0.5%

- [OPTICAL ROTATION \(781S\), Procedures, Specific Rotation](#)

[NOTE—If Galantamine Hydrobromide is isolated from a natural source, perform the test for *Optical Rotation*.]**Sample solution:** 20 mg/mL in [water](#)**Acceptance criteria:** -90° to -100°**ADDITIONAL REQUIREMENTS**

- **PACKAGING AND STORAGE:** Store at room temperature. Preserve in well-closed containers.

- **LABELING:** Label it to state if the source is naturally derived or is synthetic. If the source is not natural, perform either *Procedure 1* or *Procedure 2* of the test for the *Limit of the 4R,6S,8R Isomer*. If the source is natural, perform the test for [Optical Rotation \(781S\), Procedures, Specific Rotation](#).

- [USP Reference Standards \(11\)](#)

[USP Galantamine Hydrobromide RS](#)[USP Galantamine Hydrobromide Racemic RS](#)

[NOTE—This is 50:50 mixture of the 4S,6R,8S and 4R,6S,8R isomers.]

(4aS,6R,8aS)-3-Methoxy-11-methyl-4a,5,9,10,11,12-hexahydro-6H-benzo[2,3]benzofuro[4,3-cd]azepin-6-ol hydrobromide.

(4aR,6S,8aR)-3-Methoxy-11-methyl-4a,5,9,10,11,12-hexahydro-6H-benzo[2,3]benzofuro[4,3-cd]azepin-6-ol hydrobromide.

 $C_{17}H_{21}NO_3 \cdot HBr$

368.27

[USP Galantamine Hydrobromide Related Compounds Mixture RS](#)

Contains a mixture of the following 5 compounds:

Galantamine hydrobromide.

Galantamine N-oxide;

(4aS,6R,8aS)-6-Hydroxy-3-methoxy-11-methyl-4a,5,9,10,11,12-hexahydro-6H-benzo[2,3]benzofuro[4,3-cd]azepine 11-oxide.

 $C_{17}H_{21}NO_4$

303.35

Dihydrogalantamine;

(4aS,6R,8aS)-3-Methoxy-11-methyl-4a,5,7,8,9,10,11,12-octahydro-6H-benzo[2,3]benzofuro[4,3-cd]azepin-6-ol.

 $C_{17}H_{23}NO_3$

289.37

6S-Galantamine;

(4aS,6S,8aS)-3-Methoxy-11-methyl-4a,5,9,10,11,12-hexahydro-6H-benzo[2,3]benzofuro[4,3-cd]azepin-6-ol.

 $C_{17}H_{21}NO_3$

287.35

Anhydrogalantamine;
(4aS,8aS)-3-Methoxy-11-methyl-9,10,11,12-tetrahydro-4aH-benzo[2,3]benzofuro[4,3-cd]azepine.
 $C_{17}H_{19}NO_2$ 269.34

[NOTE—The contents have previously been referred to as galantamine hydrobromide, 6 β -hexahydrogalantamine, 6 β -octahydrogalantamine, 6 α -hexahydrogalantamine, and tetrahydrogalantamine, respectively.]

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
GALANTAMINE HYDROBROMIDE	Documentary Standards Support	SM42020 Small Molecules 4

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. 46(5)

Current DocID: [GUID-8B0E2BB6-E683-4FB9-BE0D-C80C20514055_6_en-US](#)

DOI: https://doi.org/10.31003/USPNF_M34618_06_01

DOI ref: [t5dm7](#)

OFFICIAL