

Status: Currently Official on 14-Feb-2025
Official Date: Official as of 01-May-2020
Document Type: USP Monographs
DocId: GUID-93F729C7-BB9E-490C-8AD3-C0EAA788B37E_4_en-US
DOI: https://doi.org/10.31003/USPNF_M34540_04_01
DOI Ref: 18muc

© 2025 USPC
Do not distribute

Furosemide

$C_{12}H_{11}ClN_2O_5S$ 330.74

Benzoic acid, 5-(aminosulfonyl)-4-chloro-2-[(2-furanyl)methyl]amino-;
4-Chloro-N-furfuryl-5-sulfamoylantranilic acid CAS RN®: 54-31-9; UNII: 7LXU5N7Z05.

DEFINITION

Furosemide contains NLT 98.0% and NMT 102.0 of furosemide ($C_{12}H_{11}ClN_2O_5S$), calculated on the dried basis.

IDENTIFICATION

Change to read:

- A. **[▲ SPECTROSCOPIC IDENTIFICATION TESTS \(197\), Infrared Spectroscopy: 197K](#)** ▲ (CN 1-MAY-2020)
- B. The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.
- C. The UV spectrum of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.

ASSAY

• PROCEDURE

Protect Furosemide solutions from exposure to light.

Mobile phase: Tetrahydrofuran, glacial acetic acid, and water (30:1:70)

Solution A: Acetonitrile and water (50:50)

Diluent: *Solution A* and glacial acetic acid (978:22)

System suitability solution: 20 μ g/mL of [USP Furosemide RS](#) and 12 μ g/mL of [USP Furosemide Related Compound A RS](#) in *Diluent*

Standard solution: 0.2 mg/mL of [USP Furosemide RS](#) in *Diluent*

Sample solution: 0.2 mg/mL of Furosemide in *Diluent*

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 272 nm. For *Identification test C*, use a diode-array detector in the range of 200–400 nm.

Column: 4.6-mm \times 25.0-cm; 5- μ m packing L1

Flow rate: 1 mL/min

Injection volume: 20 μ L

System suitability

Samples: *System suitability solution* and *Standard solution*

Suitability requirements

Resolution: NLT 1.5 between furosemide related compound A and furosemide, *System suitability solution*

Relative standard deviation: NMT 0.73%, *Standard solution*

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of furosemide ($C_{12}H_{11}ClN_2O_5S$) in the portion of Furosemide taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_u = peak response from the *Sample solution*

r_s = peak response from the *Standard solution*

C_s = concentration of [USP Furosemide RS](#) in the *Standard solution* (mg/mL)

C_u = concentration of Furosemide in the *Sample solution* (mg/mL)**Acceptance criteria:** 98.0%–102.0% on the dried basis**IMPURITIES**

- [RESIDUE ON IGNITION \(281\)](#): NMT 0.1%

ORGANIC IMPURITIES

Protect Furosemide solutions from exposure to light.

Mobile phase, Solution A, Diluent, and System suitability solution: Proceed as directed in the Assay.**Standard solution:** 5.0 µg/mL each of [USP Furosemide Related Compound A RS](#) and [USP Furosemide Related Compound B RS](#) in *Diluent***Sample solution:** 1.0 mg/mL of Furosemide in *Diluent***Chromatographic system**(See [Chromatography \(621\), System Suitability](#).)**Mode:** LC**Detectors:** 254 and 272 nm

[NOTE—The 2,4-dichloro-5-sulfamoylbenzoic acid impurity does not respond at 272 nm, and the 2,4-bis(furylaminio)-5-sulfamoylbenzoic acid impurity has a very intense absorbance at 254 nm. The response for furosemide is at 254 nm.]

Column: 4.6-mm × 25-cm; packing L1**Flow rate:** 1 mL/min**Injection volume:** 20 µL**Run time:** NLT 2.5 times the retention time of the furosemide peak**System suitability****Sample:** *System suitability solution***Suitability requirements****Resolution:** NLT 2.5 between furosemide and furosemide related compound A**Relative standard deviation:** NMT 2.0% for furosemide**Analysis****Samples:** *Standard solution* and *Sample solution***Acceptance criteria:** The sum of the peak areas of peaks eluting before furosemide at 254 nm from the *Sample solution* is NMT the area of the furosemide related compound B peak at 254 nm from the *Standard solution* (0.5%). The sum of the peak areas of peaks eluting after furosemide at 272 nm from the *Sample solution* is NMT the area of the furosemide related compound A peak at 272 nm from the *Standard solution* (0.5%).**SPECIFIC TESTS**

- [LOSS ON DRYING \(731\)](#).

Analysis: Dry at 105° for 3 h.**Acceptance criteria:** NMT 1.0%**ADDITIONAL REQUIREMENTS**

- **PACKAGING AND STORAGE:** Preserve in well-closed, light-resistant containers. Store at 25°, excursions permitted between 15° and 30°.

- [USP REFERENCE STANDARDS \(11\)](#).

[USP Furosemide RS](#)[USP Furosemide Related Compound A RS](#)

2-Chloro-4-N-furylaminio-5-sulfamoylbenzoic acid.

 $C_{12}H_{11}ClN_2O_5S$ 330.74[USP Furosemide Related Compound B RS](#)

4-Chloro-5-sulfamoylanthranilic acid.

 $C_7H_7ClN_2O_4S$ 250.66**Auxiliary Information** - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
FUROSEMIDE	Documentary Standards Support	SM22020 Small Molecules 2

Chromatographic Database Information: [Chromatographic Database](#)**Most Recently Appeared In:**

Pharmacopeial Forum: Volume No. PF 41(3)

Current DocID: [GUID-93F729C7-BB9E-490C-8AD3-C0EAA788B37E_4_en-US](#)**DOI:** https://doi.org/10.31003/USPNF_M34540_04_01**DOI ref:** [18muc](#)