

Status: Currently Official on 17-Feb-2025
 Official Date: Official as of 01-Sep-2022
 Document Type: USP Monographs
 DocId: GUID-39375AC5-C31B-4C74-AB80-75FD5D95A6A0_4_en-US
 DOI: https://doi.org/10.31003/USPNF_M1113_04_01
 DOI Ref: 1050t

© 2025 USPC
 Do not distribute

Fluticasone Propionate Inhalation Aerosol

DEFINITION

Fluticasone Propionate Inhalation Aerosol is a suspension of Fluticasone Propionate with suitable propellants in a pressurized container. The mean content per actuation contains NLT 85% and NMT 115% of the labeled amount of fluticasone propionate ($C_{25}H_{31}F_3O_5S$).

IDENTIFICATION

- A. [SPECTROSCOPIC IDENTIFICATION TESTS \(197\), Infrared Spectroscopy](#): 197A

Spectral range: 4000 cm^{-1} to 600 cm^{-1}

Samples: Deposit between 5 and 20 actuations onto the zinc selenide plate of the HATR (Horizontal ATR) accessory. Dry the zinc selenide plate.

Acceptance criteria: Meets the requirements

- B. The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.

ASSAY

Change to read:

- **PROCEDURE**

Buffer: 0.01 M [sodium dodecyl sulfate](#) containing 0.1% [glacial acetic acid](#)

Solution A: [Methanol](#) and *Buffer* (20:80)

Mobile phase: [Acetonitrile](#) and *Solution A* (1:1)

Standard solution: 50 $\mu\text{g}/\text{mL}$ of [USP Fluticasone Propionate RS](#) in [acetonitrile](#) and [water](#) (1:1)

Sample solution: Nominally 50 $\mu\text{g}/\text{mL}$ of fluticasone propionate prepared as follows. Shake the canister vigorously, and cool for 10 min in a dry ice–methanol bath. Remove the canister from the bath, and shake vigorously. Using a suitable device, carefully remove and keep the valve, and pour the contents into a suitable container. Allow the propellant to evaporate. Transfer the canister content to a suitable volumetric flask fitted with a suitable funnel using about 12% of the flask volume of [acetonitrile](#). Add 50% of the flask volume of [water](#). Swab the outer part of the valve with damp cotton wool soaked in [acetonitrile](#). Place the swab in the neck of the funnel in the volumetric flask. Allow the valve to dry, then dismantle, and wash the components and the canister wall with [acetonitrile](#). Collect the washings, and place in the same volumetric flask as the sample. Allow the flask to come to room temperature, and dilute with [acetonitrile](#) to volume.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 239 nm

Column: 4.6-mm \times 5-cm; 3.5- μm packing [L1](#)

Column temperature: 40°

Flow rate: 2 mL/min

Injection volume: 10 μL

System suitability

Sample: *Standard solution*

[NOTE—The retention time for the peak due to fluticasone propionate must be within the range of 1.0–1.6 min.]

Suitability requirements

Tailing factor: NMT 1.3 for the fluticasone propionate peak

Relative standard deviation: NMT 2.0%

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of the labeled amount of fluticasone propionate ($C_{25}H_{31}F_3O_5S$) in the portion of the Inhalation Aerosol taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_u = ▲peak▲ (IRA 1-Sep-2022) response from the *Sample solution*

r_s = ▲peak▲ (IRA 1-Sep-2022) response from the *Standard solution*

C_s = concentration of [USP Fluticasone Propionate RS](#) in the *Standard solution* ($\mu\text{g}/\text{mL}$)

C_u = nominal concentration of fluticasone propionate in the *Sample solution* ($\mu\text{g}/\text{mL}$)

Acceptance criteria: 85%–115%

Delete the following:

▲PERFORMANCE TESTS▲ (IRA 1-Sep-2022)

IMPURITIES

Change to read:

• **ORGANIC IMPURITIES:** Protect the *Sample solution*▲ (IRA 1-Sep-2022) from light.

Solution A: Prepare a solution of 0.05% v/v [phosphoric acid](#) in [acetonitrile](#).

Solution B: Prepare a solution of 0.05% v/v [phosphoric acid](#) in [methanol](#).

Solution C: Prepare a solution of 0.05% v/v [phosphoric acid](#) in [water](#).

Mobile phase: See ▲[Table 1](#).

Table 1▲ (IRA 1-Sep-2022)

Time (min)	Solution A (%)	Solution B (%)	Solution C (%)
0	42	3	55
40	53	3	44
60	87	3	10
70	87	3	10

System suitability solution: Dissolve 2 mg of [USP Fluticasone Propionate System Suitability Mixture RS](#) in 5 mL of *Solution A*. Add 5 mL of *Solution C*, and mix.

Sample solution: Nominally 200 $\mu\text{g}/\text{mL}$ of fluticasone propionate in *Solution A* prepared as follows. Place a canister into a freezing mixture of dry ice and [methanol](#), and cool for approximately 5 min. Carefully remove the valve from the canister, and pass the contents through a filter of 0.22- μm pore size. When the filter bed is dry, wash it with two 5-mL aliquots of [cyclohexane](#). Allow the paper to dry, then carefully transfer to an appropriate container. Dissolve the drug present on the filter paper in 50% of the final required volume of *Solution A*. Dilute with *Solution C* to volume to obtain the nominal concentration.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 239 nm

Column: 4.6-mm \times 25-cm; 5- μm packing [L1](#)

Column temperature: 40°

Flow rate: 1 mL/min

Injection volume: 50 μL

System suitability

Sample: *System suitability solution*

[NOTE—See ▲[Table 2](#)▲ (IRA 1-Sep-2022) for relative retention times.]

Suitability requirements

Resolution: NLT 0.6 between the fluticasone propionate related compound B and fluticasone propionate related compound C peaks and NLT 1.5 between the fluticasone propionate related compound D and fluticasone propionate peaks

Tailing factor: NMT 1.1 for the fluticasone propionate peak

Analysis

Sample: *Sample solution*

Calculate the percentage of each impurity in the portion of Inhalation Aerosol taken:

$$\text{Result} = (r_u/r_T) \times 100$$

r_u = ▲peak▲ (IRA 1-Sep-2022) response of each impurity from the *Sample solution*

r_T = total peak area for all peaks $\geq 0.05\%$ by area of the peak due to fluticasone propionate from the *Sample solution*

Acceptance criteria: See ▲[Table 2](#).

Table 2▲ (IRA 1-Sep-2022)

Name	Relative Retention Time	Acceptance Criteria (%)
Fluticasone sulfenic acid ^a	0.47	<0.2
Fluticasone propionate related compound B ^b	0.74	—
Fluticasone propionate related compound C ^b	0.76	—
Fluticasone propionate related compound D	0.95	<0.3
Fluticasone propionate	1.0	—
Chlorofluticasone propionate ^c	1.19	<0.3
Fluticasone propionate dimer ^d	1.33	<0.3
Any unspecified degradation product	—	<0.1
Total impurities ^e	—	NMT 1.0

^a 6 α ,9 α -Difluoro-11 β -hydroxy-16 α -methyl-3-oxo-17 α -propionyloxyandrosta-1,4-diene-17 β -carbonylsulfenic acid.

^b These are process impurities that are included in the table for identification only. These impurities are controlled in the drug substance and are not included in the total impurities.

^c S-Chloromethyl-6 α ,9 α -difluoro-11 β -hydroxy-16 α -methyl-3-oxo-17 α -propionyloxyandrosta-1,4-diene-17 β -carbothioate.

^d 6 α ,9 α -Difluoro-11 β ,17 α -dihydroxy-16 α -methyl-3-oxoandrosta-1,4-diene-17 β -carboxylic acid 6 α ,9 α -difluoro-17 β -(fluoromethylthio)carbonyl-11 β -dihydroxy-16 α -methyl-3-oxoandrosta-1,4-diene-17 β -yl ester.

^e Sum of all impurity peaks \geq 0.05%.

SPECIFIC TESTS

- **MICROBIAL ENUMERATION TESTS (61)** and **TESTS FOR SPECIFIED MICROORGANISMS (62)**: The total aerobic microbial count does not exceed 10^1 cfu/g of formulation. The total aerobic yeasts and molds count does not exceed 10^1 cfu/g of formulation. It meets the requirements of the tests for absence of *Staphylococcus aureus*, *Pseudomonas aeruginosa*, *Escherichia coli*, and *Salmonella* species in 10 g of the formulation.

Change to read:

- **PARTICULATE MATTER IN INJECTIONS (788)**.

The test described below and the specification is only applicable to a microscopic particle count test methodology. *Particulate Matter in Injections (788)* describes details of the test apparatus to be used for the determination of particulate matter using a microscopic particle count test methodology. Samples should be carefully prepared to avoid environmental contamination, and testing should be performed with suitable controls, including the appropriate use of blank determinations.

Filter: Mixed cellulose and ester filter; 25-mm diameter and 0.45- μ m pore size

Sample solution: Perform testing on two previously unused inhalers. Prime each inhaler by discharging a predetermined number of actuations to waste. Discharge, and dissolve 16 actuations, 8 from each of two canisters in 50 mL of methanol.

Analysis

Sample: Sample solution

Pass the *Sample solution* through the *Filter*, and allow the *Filter* to dry under conditions that will limit particulate contamination. Using a microscopic particle count test method, enumerate the number of particles present in the *Sample solution*. Calculate the number of particles per actuation by the formula:

$$\text{Result} = (N_{<10} + N_{10-100} + N_{>100})/16$$

$N_{<10}$ = total number of particles <10 μ m present in the *Sample solution*

N_{10-100} = total number of particles between 10 and 100 μ m present in the *Sample solution*

$N_{>100}$ = total number of particles >100 μ m present in the *Sample solution*

Acceptance criteria: See ▲ [Table 3](#).

Table 3 ▲ (IRA 1-Sep-2022)

Particle Size Range (μm)	Number of Particles per Actuation (NMT)
<10	140
10–100	50
>100	5
Total	185

Delete the following:

▲ **OTHER REQUIREMENTS** ▲ (IRA 1-SEP-2022)

ADDITIONAL REQUIREMENTS

• **PACKAGING AND STORAGE:** Preserve in nonreactive, light-resistant aerosol containers with metered valves fitted with a dose counter and provided with oral inhalation actuators. Avoid exposure to heat. Store at controlled room temperature.

• **USP REFERENCE STANDARDS (11)**

[USP Fluticasone Propionate RS](#)

[USP Fluticasone Propionate System Suitability Mixture RS](#)

It is a mixture of: Fluticasone propionate; Fluticasone propionate related compound B: [6 α ,9 α -difluoro-11 β -hydroxy-16 α -methyl-2',3,4'-trioxo-17 α -spiro(androsta-1,4-diene-17,5'-(1,3)oxathiolane]; Fluticasone propionate related compound C: [S-fluoromethyl 17 α -acetoxy-6 α ,9 α -difluoro-11 β -hydroxy-16 α -methyl-3-oxoandrosta-1,4-diene-17 β -carbothioate]; Fluticasone propionate related compound D: [S-methyl 6 α ,9 α -difluoro-11 β -hydroxy-16 α -methyl-3-oxo-17 α -propionyloxyandrosta-1,4-diene-17 β -carbothioate].

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
FLUTICASONE PROPIONATE INHALATION AEROSOL	Documentary Standards Support	SM52020 Small Molecules 5
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM52020 Small Molecules 5

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. 48(2)

Current DocID: GUID-39375AC5-C31B-4C74-AB80-75FD5D95A6A0_4_en-US

DOI: https://doi.org/10.31003/USPNF_M1113_04_01

DOI ref: [1050t](#)