

Status: Currently Official on 14-Feb-2025
Official Date: Official as of 21-Jul-2020
Document Type: USP Monographs
DocId: GUID-4834654C-3788-4E55-A376-3D7CB3B86547_3_en-US
DOI: https://doi.org/10.31003/USPNF_M33980_03_01
DOI Ref: 7t19e

© 2025 USPC
Do not distribute

Fluphenazine Hydrochloride Tablets

To view the Notice from the Expert Committee that posted in conjunction with this accelerated revision, please click

<https://www.uspnf.com/rb/fluphenazine-hcl-tabs-20200720>.

DEFINITION

Fluphenazine Hydrochloride Tablets contain NLT 90.0% and NMT 110.0% of the labeled amount of fluphenazine hydrochloride ($C_{22}H_{26}F_3N_3OS \cdot 2HCl$).

[NOTE—Throughout the following procedures, protect samples, the Reference Standard, and solutions containing them by conducting the procedures without delay, under subdued light, or using low-actinic glassware.]

IDENTIFICATION

• A. THIN-LAYER CHROMATOGRAPHY

Diluent: Methanol and water (80:20)

Standard solution: 20 mg/mL of [USP Fluphenazine Hydrochloride RS](#) in *Diluent* prepared as follows. Transfer 10 mg of [USP Fluphenazine Hydrochloride RS](#) to a separator. Add 5 mL of water and 20 mL of dilute hydrochloric acid (1 in 120) to the separator, shake for 10 min, and add 20 mL of chloroform-saturated sodium carbonate solution (1 in 10). Extract the resulting mixture with five 20-mL portions of chloroform, shaking gently to avoid emulsion formation, and pass the extract through a chloroform-washed cotton filter into a 150-mL beaker. Evaporate the extract on a steam bath to dryness, and dissolve the residue in 0.5 mL of *Diluent*.

Sample solution: Nominally 20 mg/mL of fluphenazine hydrochloride from Tablets in *Diluent* prepared as follows. Transfer a portion of finely powdered Tablets, equivalent to 10 mg of fluphenazine hydrochloride, to a separator. Add 5 mL of water and 20 mL of dilute hydrochloric acid (1 in 120) to the separator, shake for 10 min, and add 20 mL of chloroform-saturated sodium carbonate solution (1 in 10). Extract the resulting mixture with five 20-mL portions of chloroform, shaking gently to avoid emulsion formation, and pass the extract through a chloroform-washed cotton filter into a 150-mL beaker. Evaporate the extract on a steam bath to dryness, and dissolve the residue in 0.5 mL of *Diluent*.

Chromatographic system

(See [Chromatography \(621\), General Procedures, Thin-Layer Chromatography](#).)

Adsorbent: 0.25-mm layer of chromatographic silica gel mixture

Application volume: 10 μ L

Developing solvent system: Acetone, cyclohexane, and diethylamine (40:15:1)

Spray reagent: Sulfuric acid in methanol (2 in 5)

Analysis

Samples: *Standard solution* and *Sample solution*

Allow the spots to dry, and develop the chromatogram in the *Developing solvent system* until the solvent front has moved three-fourths of the length of the plate. Locate the spots on the plate by lightly spraying it with *Spray reagent*.

Acceptance criteria: The R_F value and color of the principal spot of the *Sample solution* correspond to those of the *Standard solution*.

ASSAY

• PROCEDURE

Buffer: 0.05 M monobasic potassium phosphate adjusted with phosphoric acid to a pH of 2.5

Diluent: Acetonitrile, methanol, and *Buffer* (30:30:40)

Mobile phase: 0.2% triethylamine in *Diluent*

Standard solution: 0.06 mg/mL of [USP Fluphenazine Hydrochloride RS](#) in *Diluent*

Sample stock solution: Transfer 6 Tablets to a suitable volumetric flask, add *Diluent*, shake for 1 h, and sonicate for 10 min or until a fine suspension is obtained.

Sample solution: Nominally 0.06 mg/mL of fluphenazine hydrochloride from *Sample stock solution* in *Diluent*. Filter, and use the filtrate after discarding the first 5 mL of the filtrate.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 254 nm

Column: 4-mm \times 12.5-cm; packing L7

Flow rate: 1 mL/min

Injection volume: 25 μ L

System suitability

Sample: Standard solution

Suitability requirements

Column efficiency: NLT 2000 theoretical plates

Tailing factor: NMT 2.0

Relative standard deviation: NMT 2.0%

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of the labeled amount of fluphenazine hydrochloride ($C_{22}H_{26}F_3N_3OS \cdot 2HCl$) in the portion of Tablets taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

r_U = peak response from the Sample solution

r_S = peak response from the Standard solution

C_S = concentration of [USP Fluphenazine Hydrochloride RS](#) in the Standard solution (mg/mL)

C_U = nominal concentration of fluphenazine hydrochloride in the Sample solution (mg/mL)

Acceptance criteria: 90.0%–110.0%

PERFORMANCE TESTS

Change to read:

- [Dissolution \(711\)](#)

▲Test 1▲ (RB 21-Jul-2020)

Medium: 0.01 N hydrochloric acid; 900 mL

Apparatus 1: 100 rpm

Time: 45 min

Buffer: 0.05 M monobasic potassium phosphate adjusted with phosphoric acid to a pH of 2.5

Diluent: Acetonitrile, methanol, and Buffer (30:30:40)

Mobile phase: 0.3% triethylamine in Diluent

Sample solution: Dilute a portion of the solution under test with an equal volume of Mobile phase.

Standard solution: [USP Fluphenazine Hydrochloride RS](#) at a concentration and composition similar to that of the Sample solution

Chromatographic system and System suitability: Proceed as directed in the Assay, except use a flow rate of 2 mL/min and an injection volume of 100 μ L.

Analysis

Samples: Sample solution and Standard solution

Determine the amount of fluphenazine hydrochloride ($C_{22}H_{26}F_3N_3OS \cdot 2HCl$) dissolved.

Tolerances: NLT 75% (Q) of the labeled amount of fluphenazine hydrochloride ($C_{22}H_{26}F_3N_3OS \cdot 2HCl$) is dissolved.

▲Test 2: If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 2.

Medium: 0.1 N hydrochloric acid; 500 mL

Apparatus 1: 100 rpm

Time: 30 min

Diluted phosphoric acid solution: Transfer 10 mL of phosphoric acid to a 100-mL volumetric flask containing about 50 mL of water. Cool and dilute with water to volume.

Buffer: 6.8 g/L of monobasic potassium phosphate in water, adjusted with *Diluted phosphoric acid solution* to a pH of 2.5

Solution A: Acetonitrile, methanol, and Buffer (30:30:40)

Mobile phase: To each liter of *Solution A*, add 3.0 mL of triethylamine.

Diluent: Medium and Mobile phase (50:50)

Standard stock solution: 0.1 mg/mL of [USP Fluphenazine Hydrochloride RS](#) in Diluent. Sonicate to dissolve if needed.

Standard solution: ($L/1000$) mg/mL of [USP Fluphenazine Hydrochloride RS](#) from the Standard stock solution in Diluent, where L is the label claim in mg/Tablet

Sample stock solution: Pass a portion of the solution under test through an appropriate filter, and discard the first 2 mL of filtrate.

Sample solution: Transfer an equal volume of the Sample stock solution and the Mobile phase to a suitable container, and mix well.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 254 nm

Column: 4.6-mm \times 5-cm; 3.5- μ m packing [L7](#)

Column temperature: 40°

Flow rate: 2 mL/min**Injection volume:** 100 μ L**Run time:** NLT 2 times the retention time of fluphenazine**System suitability****Sample:** Standard solution**Suitability requirements****Tailing factor:** NMT 2.0**Relative standard deviation:** NMT 2.0%**Analysis****Samples:** Standard solution and Sample solutionCalculate the percentage of the labeled amount of fluphenazine hydrochloride ($C_{22}H_{26}F_3N_3OS \cdot 2HCl$) dissolved:

$$\text{Result} = (r_u/r_s) \times C_s \times D \times V \times (1/L) \times 100$$

 r_u = peak response of fluphenazine from the Sample solution r_s = peak response of fluphenazine from the Standard solution C_s = concentration of [USP Fluphenazine Hydrochloride RS](#) in the Standard solution (mg/mL) D = dilution factor for the Sample solution, 2 V = volume of Medium, 500 mL L = label claim (mg/Tablet)**Tolerances:** NLT 80% (Q) of the labeled amount of fluphenazine hydrochloride ($C_{22}H_{26}F_3N_3OS \cdot 2HCl$) is dissolved.▲ (RB 21-Jul-2020)

- [Uniformity of Dosage Units \(905\)](#): Meet the requirements

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in tight, light-resistant containers.

Add the following:

- ▲ • **LABELING:** When more than one *Dissolution* test is given, the labeling states the *Dissolution* test used only if *Test 1* is not used.▲ (RB 21-Jul-2020)

- [USP Reference Standards \(11\)](#)

[USP Fluphenazine Hydrochloride RS](#)**Auxiliary Information** - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
FLUPHENAZINE HYDROCHLORIDE TABLETS	Documentary Standards Support	SM42020 Small Molecules 4

Chromatographic Database Information: [Chromatographic Database](#)**Most Recently Appeared In:**

Pharmacopeial Forum: Volume No. PF 44(6)

Current DocID: GUID-4834654C-3788-4E55-A376-3D7CB3B86547_3_en-US**DOI:** https://doi.org/10.31003/USPNF_M33980_03_01**DOI ref:** [7tI9e](#)