

Time (minutes)	Solution A (%)	Solution B (%)	Elution
45.0–45.1	0→100	100→0	linear gradient
45.1–60	100	0	isocratic

Chromatograph the *Test solution*, and record the peak responses as directed for *Procedure*: the column efficiency is not less than 15,000 theoretical plates. Chromatograph the *System suitability solution*, and record the peak responses as directed for *Procedure*: the signal-to-noise ratio for the fluoxymesterone peak is not less than 100.

Procedure—Separately inject equal volumes (about 5 μ L) of the *Blank solution* and the *Test solution* into the chromatograph, record the chromatograms, and measure the areas for any peaks that do not appear in the *Blank solution* that have an area equal to or greater than 0.1% of the fluoxymesterone peak. Calculate the percentage of each impurity in the portion of Fluoxymesterone taken by the formula:

$$100(r_f/r_s)$$

in which r_i is the peak response for each impurity; and r_s is the sum of the responses of all the peaks: not more than 1.0% of any individual impurity is found; and not more than 2.0% of total impurities is found.

Assay—

Internal standard solution—Dissolve methylprednisolone in a mixture of chloroform and methanol (95:5) to obtain a solution containing about 200 μ g per mL.

Mobile phase—Prepare a solution containing butyl chloride, water-saturated butyl chloride, tetrahydrofuran, methanol, and glacial acetic acid (475:475:70:35:30).

Standard preparation—Dissolve an accurately weighed quantity of [USP Fluoxymesterone RS](#) in *Internal standard solution* to obtain a solution having a known concentration of about 0.25 mg per mL.

Assay preparation—Dissolve about 25 mg of Fluoxymesterone, accurately weighed, in 100.0 mL of *Internal standard solution* to obtain a solution having a concentration of about 0.25 mg per mL.

Procedure—Inject equal volumes of the *Assay preparation* and the *Standard preparation* into a suitable high-pressure liquid chromatograph (see [Chromatography \(621\)](#)) of the general type equipped with a detector for monitoring UV light at 254 nm, equipped with a suitable recorder, and capable of providing column pressure up to about 2000 psi. The instrument contains a 4-mm \times 30-cm stainless steel column that contains packing L3. In a suitable chromatogram, the resolution, R , between fluoxymesterone and the internal standard is not less than 3.0; and the relative standard deviation of the peak response ratios of four replicate injections of the *Standard preparation* is not more than 2.0%. Calculate the quantity, in mg, of $C_{20}H_{29}FO_3$ in the portion of Fluoxymesterone taken by the formula:

$$100C(R_f/R_s)$$

in which C is the concentration, in mg per mL, of [USP Fluoxymesterone RS](#) in the *Standard preparation*; and R_f and R_s are the peak response ratios of fluoxymesterone to the internal standard obtained from the *Assay preparation* and the *Standard preparation*, respectively.

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
FLUOXYMESTERONE	Documentary Standards Support	SM52020 Small Molecules 5

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 28(1)

Current DocID: GUID-7B078BD6-6509-4156-8A9A-AA5449F9C771_2_en-US

DOI: https://doi.org/10.31003/USPNF_M33800_02_01

DOI ref: [43mkx](#)