

Status: Currently Official on 17-Feb-2025
 Official Date: Official as of 01-May-2020
 Document Type: USP Monographs
 DocId: GUID-F0BE574C-362C-4082-8255-118E969C4E3B_2_en-US
 DOI: https://doi.org/10.31003/USPNF_M33787_02_01
 DOI Ref: 09iu8

© 2025 USPC
 Do not distribute

Fluoxetine Tablets

DEFINITION

Fluoxetine Tablets contain an amount of Fluoxetine Hydrochloride equivalent to NLT 90.0% and NMT 110.0% of the labeled amount of fluoxetine ($C_{17}H_{18}F_3NO$).

IDENTIFICATION

Change to read:

- A. **[▲ SPECTROSCOPIC IDENTIFICATION TESTS \(197\), Infrared Spectroscopy: 197K](#)** ▲ (ON 1-MAY-2020)

Sample: Transfer 1 Tablet to a suitable container, dissolve in 10 mL of chloroform, and pass through a suitable filter. Rinse the container with 5 mL of chloroform, and pass the rinsings through a suitable filter. Evaporate the combined filtrate in a hood with the aid of a current of air and mild heat to dryness.

Acceptance criteria: Meet the requirements

- B. The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.

ASSAY

• PROCEDURE

Solution A: 7.1 g/L of sodium 1-pentane-sulfonate in water. To each L add 2.9 mL of glacial acetic acid, and adjust with 5 N sodium hydroxide solution to a pH of 5.0.

Mobile phase: Methanol and *Solution A* (67:33)

System suitability stock solution: 0.2 mg/mL of 4-trifluoromethylphenol in *Mobile phase*

System suitability solution: 0.02 mg/mL of 4-trifluoromethylphenol from *System suitability stock solution* and 0.11 mg/mL of [USP Fluoxetine Hydrochloride RS](#) in *Mobile phase*

Standard solution: 0.1 mg/mL of [USP Fluoxetine Hydrochloride RS](#) in *Mobile phase*

Sample stock solution: Transfer 10 Tablets to a 1000-mL volumetric flask. Add 500 mL of *Mobile phase*, and shake to disintegrate the Tablets. Dilute with *Mobile phase* to volume, and sonicate for 10 min.

Sample solution: Nominally 0.1 mg/mL of fluoxetine from *Sample stock solution* in *Mobile phase*. Pass through a suitable filter. Use the filtrate.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 227 nm

Column: 4.6-mm × 7.5-cm; 3.5-μm packing L7

Column temperature: 38°

Flow rate: 1 mL/min

Injection volume: 10 μL

System suitability

Sample: *System suitability solution*

Suitability requirements

Resolution: NLT 4.0 between fluoxetine and 4-trifluoromethylphenol

Tailing factor: NMT 1.7 for fluoxetine

Relative standard deviation: NMT 2.0%

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of the labeled amount of fluoxetine ($C_{17}H_{18}F_3NO$) in the portion of Tablets taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times (M_{r1}/M_{r2}) \times 100$$

r_u = peak response from the *Sample solution*

r_s = peak response from the *Standard solution*

C_s = concentration of [USP Fluoxetine Hydrochloride RS](#) in the *Standard solution* (mg/mL)

C_u = nominal concentration of fluoxetine in the *Sample solution* (mg/mL)

M_{r1} = molecular weight of fluoxetine, 309.33

M_{r2} = molecular weight of fluoxetine hydrochloride, 345.79

Acceptance criteria: 90.0%–110.0%

PERFORMANCE TESTS

- **Dissolution (711).**

Medium: 0.1 N hydrochloric acid; 1000 mL

Apparatus 1: 100 rpm

Time: 15 min

Solution A, Mobile phase, and System suitability solution: Prepare as directed in the Assay.

Sample solution: Pass 20 mL of the solution under test through a suitable filter.

Standard solution: [USP Fluoxetine Hydrochloride RS](#) in Medium having a known concentration similar to that of the *Sample solution*

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 227 nm

Column: 4.6-mm × 7.5-cm; 3.5-μm packing L7

Column temperature: 38°

Flow rate: 1 mL/min

Injection volume: 20 μL

System suitability

Sample: System suitability solution

Suitability requirements

Resolution: NLT 2.0 between fluoxetine and 4-trifluoromethylphenol

Tailing factor: NMT 1.7 for fluoxetine

Relative standard deviation: NMT 2.0%

Analysis

Samples: *Sample solution* and *Standard solution*

Calculate the percentage of the labeled amount of fluoxetine ($C_{17}H_{18}F_3NO$) dissolved:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times (M_{r1}/M_{r2}) \times 100$$

r_u = peak response from the *Sample solution*

r_s = peak response from the *Standard solution*

C_s = concentration of [USP Fluoxetine Hydrochloride RS](#) in the *Standard solution* (mg/mL)

C_u = nominal concentration of fluoxetine in the *Sample solution* (mg/mL)

M_{r1} = molecular weight of fluoxetine, 309.33

M_{r2} = molecular weight of fluoxetine hydrochloride, 345.79

Tolerances: NLT 80% (Q) of the labeled amount of fluoxetine ($C_{17}H_{18}F_3NO$) is dissolved.

- **Uniformity of Dosage Units (905):** Meet the requirements

IMPURITIES

- **ORGANIC IMPURITIES**

Solution A: 6.5 g/L of sodium 1-octanesulfonate in water. To each L add 2.9 mL of phosphoric acid, and adjust with 5 N sodium hydroxide solution to a pH of 3.0.

Mobile phase: Acetonitrile and *Solution A* (43:57)

Impurity identification solution: Nominally 2.2 mg/mL of fluoxetine hydrochloride from [USP Fluoxetine Hydrochloride RS](#) prepared as follows.

Transfer 22 mg of [USP Fluoxetine Hydrochloride RS](#) to a 10-mL volumetric flask and dilute with 1 N sulfuric acid to volume. Heat the flask to 85° for 3 h, and allow to cool to room temperature. [NOTE—The resulting solution contains aminomethyl-1-phenylpropanol, which is also known as 3-methylamino-1-phenylpropan-1-ol or α-[2-(methylamino)ethyl]benzenemethanol.]

System suitability solution: 0.001 mg/mL of [USP Fluoxetine Related Compound B RS](#) and 0.015 mg/mL of [USP Fluoxetine Hydrochloride RS](#) prepared as follows. Transfer suitable quantities of [USP Fluoxetine Related Compound B RS](#) and [USP Fluoxetine Hydrochloride RS](#) to a 10-mL volumetric flask. Add 0.2 mL of *Impurity identification solution* and dilute with *Mobile phase* to volume.

Standard solution: 0.015 mg/mL of [USP Fluoxetine Hydrochloride RS](#) in *Mobile phase*

Sensitivity solution: 0.2 μg/mL of [USP Fluoxetine Hydrochloride RS](#) from *Standard solution* in *Mobile phase*

Sample solution: 2 mg/mL of fluoxetine from Tablets prepared as follows. Transfer 10 Tablets to a suitable volumetric flask and add 50% of the final flask volume of *Mobile phase*. Shake to disintegrate and dilute with *Mobile phase* to volume. Sonicate the resulting solution for 10 min, pass a portion through a suitable filter, and use the filtrate.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 215 nm

Column: 4.6-mm × 15-cm; 3.5-μm packing L7

Column temperature: 30°

Flow rate: 1 mL/min

Injection volume: 20 μL

Run time: NLT 3 times the retention time of fluoxetine

System suitability

Samples: *Mobile phase*, *System suitability solution*, *Standard solution*, and *Sensitivity solution*

Injection order: *Mobile phase*, *Sensitivity solution*, *System suitability solution*, and *Standard solution*

[Note—See [Table 1](#) for the relative retention times.]

Suitability requirements

Resolution: NLT 4.5 between aminomethyl-1-phenylpropanol and fluoxetine related compound B, *System suitability solution*

Relative standard deviation: NMT 5.0%, *Standard solution*

Signal-to-noise ratio: NLT 10, *Sensitivity solution*

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of each impurity in the portion of Tablets taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times (M_{r1}/M_{r2}) \times 100$$

r_U = peak response of each impurity from the *Sample solution*

r_S = peak response of fluoxetine from the *Standard solution*

C_S = concentration of [USP Fluoxetine Hydrochloride RS](#) in the *Standard solution* (mg/mL)

C_U = nominal concentration of fluoxetine in the *Sample solution* (mg/mL)

M_{r1} = molecular weight of fluoxetine, 309.33

M_{r2} = molecular weight of fluoxetine hydrochloride, 345.79

Acceptance criteria: See [Table 1](#).

Table 1

Name	Relative Retention Time	Acceptance Criteria, NMT (%)
Aminomethyl-1-phenylpropanol ^a	0.19	0.25
Fluoxetine related compound B	0.26	0.25
Fluoxetine	1.0	—
Any individual unspecified impurity	—	0.25
Total impurities	—	0.80

^a 3-Methylamino-1-phenylpropan-1-ol; also known as α -[2-(Methylamino)ethyl]benzenemethanol.

ADDITIONAL REQUIREMENTS

• **PACKAGING AND STORAGE:** Preserve in tight containers, and store at controlled room temperature.

• [USP Reference Standards \(11\)](#)

[USP Fluoxetine Hydrochloride RS](#)

[USP Fluoxetine Related Compound B RS](#)

N-Methyl-3-phenylpropan-1-amine;
also known as *N*-Methyl-3-phenylpropylamine.

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
FLUOXETINE TABLETS	Documentary Standards Support	SM42020 Small Molecules 4
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM42020 Small Molecules 4

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. 51(1)

Current DocID: GUID-F0BE574C-362C-4082-8255-118E969C4E3B_2_en-US

DOI: https://doi.org/10.31003/USPNF_M33787_02_01

DOI ref: 09iu8

OFFICIAL