

Status: Currently Official on 14-Feb-2025
 Official Date: Official as of 01-May-2020
 Document Type: USP Monographs
 DocId: GUID-8FB4F9C5-78F5-41A4-89E2-54CE9E30AE5C_4_en-US
 DOI: https://doi.org/10.31003/USPNF_M33740_04_01
 DOI Ref: hl5p1

© 2025 USPC
 Do not distribute

Fluorouracil

$C_4H_3FN_2O_2$ 130.08
 2,4(1*H*,3*H*)-Pyrimidinedione, 5-fluoro-;
 5-Fluorouracil CAS RN®: 51-21-8; UNII: U3P01618RT.

DEFINITION

Fluorouracil contains NLT 98.0% and NMT 102.0% of fluorouracil ($C_4H_3FN_2O_2$), calculated on the dried basis.

[CAUTION—Great care should be taken to prevent inhaling particles of Fluorouracil and exposing the skin to it.]

IDENTIFICATION

Change to read:

- A. **▲SPECTROSCOPIC IDENTIFICATION TESTS (197), Infrared Spectroscopy: 197M▲** (CN 1-MAY-2020)

Change to read:

- B. **▲SPECTROSCOPIC IDENTIFICATION TESTS (197), Ultraviolet-Visible Spectroscopy: 197U▲** (CN 1-MAY-2020)

Medium: pH 4.7 acetate buffer prepared from 8.4 g of sodium acetate and 3.35 mL of glacial acetic acid mixed with water to make 1000 mL

Sample solution: 10 μ g/mL in *Medium*

Acceptance criteria: Meets the requirements

- C. The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.

ASSAY

• PROCEDURE

Buffer: 6.8 g/L of monobasic potassium phosphate in water. Adjust with 5 M potassium hydroxide to a pH of 5.7 ± 0.1 .

Mobile phase: Acetonitrile and *Buffer* (5:95)

Standard solution: 10 μ g/mL of [USP Fluorouracil RS](#) in water

Sample solution: 10 μ g/mL of Fluorouracil in water

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 254 nm

Column: 4.6-mm \times 25-cm; 5- μ m packing L1

Flow rate: 1.0 mL/min

Injection volume: 20 μ L

System suitability

Sample: *Standard solution*

Suitability requirements

Relative standard deviation: NMT 0.73%, *Standard solution*

Tailing factor: NMT 1.5, *Standard solution*

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of fluorouracil ($C_4H_3FN_2O_2$) in the portion of Fluorouracil taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

r_U = peak response from the *Sample solution*

r_S = peak response from the *Standard solution*

C_s = concentration of [USP Fluorouracil RS](#) in the *Standard solution* (µg/mL)

C_u = concentration of Fluorouracil in the *Sample solution* (µg/mL)

Acceptance criteria: 98.0%–102.0% on the dried basis

IMPURITIES

• [RESIDUE ON IGNITION \(281\)](#): NMT 0.1%

• **ORGANIC IMPURITIES**

Protect the *Standard solution* and *Sample solution* from light.

Mobile phase: 6.8 g/L of monobasic potassium phosphate in water. Adjust with 5 M potassium hydroxide to a pH of 5.7 ± 0.1.

Standard solution: 0.1 µg/mL each of [USP Fluorouracil RS](#), [USP Fluorouracil Related Compound A RS](#), [USP Fluorouracil Related Compound B RS](#), and [USP Uracil RS](#), and 0.2 µg/mL of [USP Fluorouracil Related Compound E RS](#) in *Mobile phase*

Sample solution: 0.1 mg/mL of Fluorouracil in *Mobile phase*

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 266 nm

Column: 4.6-mm × 25-cm; 5-µm packing L1

Flow rate: 1.0 mL/min

Injection volume: 20 µL

Run time: NLT 3 times the retention time of the fluorouracil peak

System suitability

Sample: *Standard solution*

Suitability requirements

Resolution: NLT 2 between the uracil and fluorouracil peaks

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of fluorouracil related compound A, fluorouracil related compound B, and uracil in the portion of Fluorouracil taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_u = peak response of relevant fluorouracil related compound from the *Sample solution*

r_s = peak response of relevant fluorouracil related compound from the *Standard solution*

C_s = concentration of relevant fluorouracil related compound in the *Standard solution* (mg/mL)

C_u = concentration of Fluorouracil in the *Sample solution* (mg/mL)

Calculate the percentage of 5-methoxyuracil, fluorouracil related compound E, and any unspecified impurity in the portion of Fluorouracil taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times (1/F) \times 100$$

r_u = peak response of each impurity from the *Sample solution*

r_s = peak response of fluorouracil from the *Standard solution*

C_s = concentration of [USP Fluorouracil RS](#) in the *Standard solution* (mg/mL)

C_u = concentration of Fluorouracil in the *Sample solution* (mg/mL)

F = relative response factor for each individual impurity (see [Table 1](#))

Acceptance criteria: See [Table 1](#). Disregard any impurity peaks less than 0.05%.

Table 1

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Fluorouracil related compound A ^a	0.5	—	0.15

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Fluorouracil related compound B ^b	0.7	—	0.15
Uracil	0.9	—	0.15
Fluorouracil	1.0	—	—
5-Methoxyuracil ^c	1.6	0.67	0.15
Fluorouracil related compound E ^d	1.9	0.77	0.15
Any individual unspecified impurity	—	1.0	0.10
Total impurities	—	—	0.5

^a Pyrimidine-2,4,6(1H,3H,5H)-trione.

^b Dihydropyrimidine-2,4,5(3H)-trione.

^c 5-Methoxypyrimidine-2,4(1H,3H)-dione.

^d 5-Chloropyrimidine-2,4(1H,3H)-dione.

• **LIMITS OF FLUOROURACIL RELATED COMPOUND F AND UREA**

Diluent: Methanol and water (1:1)

Standard solution A: 0.025 mg/mL of [USP Fluorouracil Related Compound F RS](#) in Diluent

Standard solution B: 0.02 mg/mL of [USP Urea RS](#) in methanol

Sample solution: 10 mg/mL of Fluorouracil in Diluent

Chromatographic system

(See [Chromatography \(621\)](#), [Thin-Layer Chromatography](#).)

Mode: TLC

Adsorbent: Chromatographic silica gel mixture

Application volume: 10 µL

Developing solvent system: Ethyl acetate, methanol, and water (70:15:15)

Reagent: Prepare a 10-mg/mL solution of *p*-dimethylaminobenzaldehyde in anhydrous alcohol. Prepare a mixture of this solution and hydrochloric acid (10:1).

Analysis

Samples: Standard solution A, Standard solution B, and Sample solution

Procedure: Develop with Developing solvent system, followed by air drying. Examine the plate under UV light at 254 nm for fluorouracil related compound F. Spray the plate at least twice with Reagent, and dry the plate in an oven at 80° for 3–4 min. Examine the plate under daylight for urea. [NOTE—The urea produces a yellow spot, and fluorouracil is not detected by the spray.]

Acceptance criteria: The spot of fluorouracil related compound F in the Sample solution is not more intense than the spot of fluorouracil related compound F from Standard solution A (NMT 0.25%). The spot of urea in the Sample solution is not more intense than the spot of urea from Standard solution B (NMT 0.2%).

SPECIFIC TESTS

• [Loss on Drying \(731\)](#).

Analysis: Dry under vacuum over phosphorus pentoxide at 80° for 4 h.

Acceptance criteria: NMT 0.5%

ADDITIONAL REQUIREMENTS

• **PACKAGING AND STORAGE:** Preserve in tight, light-resistant containers.

• [USP REFERENCE STANDARDS \(11\)](#)

[USP Fluorouracil RS](#)

[USP Fluorouracil Related Compound A RS](#)

Pyrimidine-2,4,6(1H,3H,5H)-trione.

$C_4H_4N_2O_3$ 128.09

[USP Fluorouracil Related Compound B RS](#)

Dihydropyrimidine-2,4,5(3H)-trione.

$C_4H_4N_2O_3$ 128.09

[USP Fluorouracil Related Compound E RS](#)

5-Chloropyrimidine-2,4(1H,3H)-dione.

$C_4H_3ClN_2O_2$

146.53

[USP Fluorouracil Related Compound F RS](#)

2-Ethoxy-5-fluoropyrimidin-4(1*H*)-one.

$C_6H_7FN_2O_2$

158.13

[USP Uracil RS](#)

Uracil.

$C_4H_4N_2O_2$

112.09

[USP Urea RS](#)

Urea.

CH_4N_2O

60.06

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
FLUOROURACIL	Documentary Standards Support	SM32020 Small Molecules 3

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 39(3)

Current DocID: [GUID-8FB4F9C5-78F5-41A4-89E2-54CE9E30AE5C_4_en-US](#)

DOI: https://doi.org/10.31003/USPNF_M33740_04_01

DOI ref: [hl5pl](#)