

Status: Currently Official on 14-Feb-2025

Official Date: Official as of 01-Aug-2024

Document Type: USP Monographs

DocId: GUID-F234959F-D751-41D5-A8C7-26B41F07D92D_5_en-US

DOI: https://doi.org/10.31003/USPNF_M33760_05_01

DOI Ref: k3lx

© 2025 USPC

Do not distribute

Fluorouracil Injection

DEFINITION

Fluorouracil Injection is a sterile solution of Fluorouracil in Water for Injection, prepared with the aid of Sodium Hydroxide. It contains NLT 90.0% and NMT 110.0% of the labeled amount of fluorouracil ($C_4H_3FN_2O_2$).

[NOTE—If a precipitate is formed as a result of exposure to low temperatures, redissolve it by heating to 60° with vigorous shaking, and allow to cool to body temperature prior to use.]

IDENTIFICATION

- A. The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.

Change to read:

- B. **SPECTROSCOPIC IDENTIFICATION TESTS (197), Infrared Spectroscopy:** ▲197A or ▲ (USP 1-Aug-2024) 197M

Sample for 197M: Carefully acidify a portion of Injection, equivalent to 100 mg of fluorouracil, with [glacial acetic acid](#). Stir, and slightly chill the solution to precipitate the fluorouracil. Collect the precipitate, wash with 1 mL of [water](#), and then dry under vacuum over [phosphorus pentoxide](#) at 80° for 4 h.

Acceptance criteria: Meets the requirements

Add the following:

- ▲ C. The UV spectrum of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay. ▲ (USP 1-Aug-2024)

ASSAY

Change to read:

• PROCEDURE

Buffer: 6.8 g/L of [potassium phosphate, monobasic](#) in [water](#). Adjust with 5 M [potassium hydroxide](#) to a pH of 5.7 ± 0.1.

Mobile phase: [Acetonitrile](#) and [Buffer](#) (5:95)

Standard solution: 10 µg/mL of [USP Fluorouracil RS](#) in [water](#)

Sample solution: Nominally 10 µg/mL of fluorouracil in [water](#), from Injection

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 254 nm. ▲For *Identification C*, use a diode array detector in the range of 200–400 nm. ▲ (USP 1-Aug-2024)

Column: 4.6-mm × 25-cm; 5-µm packing [L1](#)

Flow rate: 1.0 mL/min

Injection volume: 20 µL

System suitability

Sample: *Standard solution*

Suitability requirements

Relative standard deviation: NMT 0.73%

Tailing factor: NMT 1.5

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of the labeled amount of fluorouracil ($C_4H_3FN_2O_2$) in the portion of Injection taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_u = peak response ▲of fluorouracil ▲ (USP 1-Aug-2024) from the *Sample solution*

r_s = peak response ▲of fluorouracil ▲ (USP 1-Aug-2024) from the *Standard solution*

C_s = concentration of [USP Fluorouracil RS](#) in the *Standard solution* (µg/mL)

C_u = nominal concentration of fluorouracil in the *Sample solution* (µg/mL)

Add the following:

▲IMPURITIES

• ORGANIC IMPURITIES

Mobile phase: 0.77 g/L of [ammonium acetate](#) in [water](#). Adjust with [formic acid](#) to a pH of 5.60–5.65.

System suitability solution: 0.2 mg/mL of [USP Fluorouracil RS](#) and 1.0 µg/mL each of [USP Fluorouracil Related Compound A RS](#), [USP Fluorouracil Related Compound B RS](#), [USP Uracil RS](#), and [USP Fluorouracil Related Compound E RS](#) in [water](#)

Sensitivity solution: 0.1 µg/mL of [USP Fluorouracil Related Compound E RS](#) in [water](#)

Standard solution: 0.3 µg/mL each of [USP Fluorouracil RS](#), [USP Fluorouracil Related Compound A RS](#), [USP Fluorouracil Related Compound B RS](#), [USP Uracil RS](#), and [USP Fluorouracil Related Compound E RS](#) in [water](#)

Sample solution: Nominally 0.2 mg/mL of fluorouracil in [water](#), from Injection

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 254 nm

Column: 4.6-mm × 25-cm; 4-µm packing [L11](#)

Flow rate: 1.0 mL/min

Injection volume: 10 µL

Run time: NLT 3 times the retention time of fluorouracil

System suitability

Samples: System suitability solution, Sensitivity solution, and Standard solution

Suitability requirements

Resolution: NLT 2.0 between fluorouracil related compound A and fluorouracil related compound B; NLT 2.0 between fluorouracil related compound B and uracil; NLT 2.0 between uracil and fluorouracil; NLT 2.0 between fluorouracil and fluorouracil related compound E, System suitability solution

Relative standard deviation: NMT 5.0% for each component, Standard solution

Signal-to-noise ratio: NLT 10 for fluorouracil related compound E, Sensitivity solution

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of fluorouracil related compound A, fluorouracil related compound B, uracil, and fluorouracil related compound E in the portion of Injection taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_u = peak area of each specified impurity from the *Sample solution*

r_s = peak area of each specified impurity from the *Standard solution*

C_s = concentration of corresponding Reference Standard in the *Standard solution* (mg/mL)

C_u = nominal concentration of fluorouracil in the *Sample solution* (mg/mL)

Calculate the percentage of any unspecified impurity in the portion of Injection taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_u = peak area of each unspecified impurity from the *Sample solution*

r_s = peak area of fluorouracil from the *Standard solution*

C_s = concentration of [USP Fluorouracil RS](#) in the *Standard solution* (mg/mL)

C_u = nominal concentration of fluorouracil in the *Sample solution* (mg/mL)

Acceptance criteria: See [Table 1](#). The reporting threshold is 0.05%.

Table 1

Name	Relative Retention Time	Acceptance Criteria, NMT (%)
Fluorouracil related compound A	0.50	0.2

Name	Relative Retention Time	Acceptance Criteria, NMT (%)
Fluorouracil related compound B	0.71	0.2
Uracil	0.86	0.2
Fluorouracil	1.0	—
Fluorouracil related compound E	1.71	0.2
Any unspecified impurity	—	0.2
Total impurities ^a	—	1.0

^a Total impurities does not include urea, which is tested separately.

• **LIMIT OF UREA**

Mobile phase: 12.7 g/L of [sodium nitrate](#) with 0.1% (v/v) of [triethylamine](#) in [water](#)

Standard solution: 0.5 mg/mL of [USP Urea RS](#) in [Mobile phase](#)

Sample solution: Nominally 25 mg/mL of fluorouracil in [Mobile phase](#), from [Injection](#)

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: Refractive index

Column: 7.8-mm × 30-cm; 6-µm packing [L39](#)

Temperatures

Detector: 45°

Column: 35°

Flow rate: 0.8 mL/min

Injection volume: 50 µL

Run time: NLT 1.5 times the retention time of urea

Attenuation: 250,000 nano Refractive Index Units

System suitability

Sample: [Standard solution](#)

Suitability requirements

Relative standard deviation: NMT 3.0%

Tailing factor: NMT 2.0

Analysis

Samples: [Standard solution](#) and [Sample solution](#)

Calculate the percentage of urea in the portion of [Injection](#) taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_u = peak area of urea from the [Sample solution](#)

r_s = peak area of urea from the [Standard solution](#)

C_s = concentration of [USP Urea RS](#) in the [Standard solution](#) (mg/mL)

C_u = nominal concentration of fluorouracil in the [Sample solution](#) (mg/mL)

Acceptance criteria: NMT 3.0%▲ (USP 1-Aug-2024)

SPECIFIC TESTS

Change to read:

• [BACTERIAL ENDOTOXINS TEST \(85\)](#): ▲Meets the requirements▲ (USP 1-Aug-2024)

Add the following:

▲. [PARTICULATE MATTER IN INJECTIONS \(788\)](#): Meets the requirements▲ (USP 1-Aug-2024)

• [pH \(791\)](#): 8.6–9.4

Add the following:

▲. [STERILITY TEST \(71\)](#): Meets the requirements▲ (USP 1-Aug-2024)

- **OTHER REQUIREMENTS:** It meets the requirements in [Injections and Implanted Drug Products \(1\)](#).

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in single-dose containers, preferably of Type I glass, and store at controlled room temperature. Avoid freezing and exposure to light.

Change to read:

- **LABELING:** Label it to indicate the expiration date ▲ (USP 1-Aug-2024) .

Change to read:

- [USP REFERENCE STANDARDS \(11\)](#)

[USP Fluorouracil RS](#)

▲ [USP Fluorouracil Related Compound A RS](#)

Pyrimidine-2,4,6(1H,3H,5H)-trione.

C4H4N2O3 128.09

[USP Fluorouracil Related Compound B RS](#)

Dihydropyrimidine-2,4,5(3H)-trione.

C4H4N2O3 128.09

[USP Fluorouracil Related Compound E RS](#)

5-Chloropyrimidine-2,4(1H,3H)-dione.

C4H3ClN2O2 146.53

[USP Uracil RS](#)

Uracil.

C4H4N2O2 112.09

[USP Urea RS](#)

Urea.

CH4N2O 60.06 ▲ (USP 1-Aug-2024)

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
FLUOROURACIL INJECTION	Documentary Standards Support	SM32020 Small Molecules 3

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. 47(3)

Current DocID: GUID-F234959F-D751-41D5-A8C7-26B41F07D92D_5_en-US

DOI: https://doi.org/10.31003/USPNF_M33760_05_01

DOI ref: [k3lx](#)