

Status: Currently Official on 14-Feb-2025
 Official Date: Official as of 01-May-2020
 Document Type: USP Monographs
 DocId: GUID-3750A7E9-0A6D-4FE8-8B3B-85C788CFA63B_2_en-US
 DOI: https://doi.org/10.31003/USPNF_M33400_02_01
 DOI Ref: hmo0d

© 2025 USPC
 Do not distribute

Flunisolide

$C_{24}H_{31}FO_6 \cdot \frac{1}{2}H_2O$ 443.51

Pregna-1,4-diene-3,20-dione, 6-fluoro-11,21-dihydroxy-16,17-[(1-methylethylidene)bis(oxy)], hemihydrate, (6 α ,11 β ,16 α)-.

6 α -Fluoro-11 β ,16 α ,17,21-tetrahydroxypregna-1,4-diene-3,20-dione cyclic 16,17-acetal with acetone, hemihydrate CAS RN[®]: 77326-96-6; UNII: QK4DYS664X.

Anhydrous 434.51 CAS RN[®]: 3385-03-3.

» Flunisolide contains not less than 97.0 percent and not more than 102.0 percent of $C_{24}H_{31}FO_6$, calculated on the anhydrous basis.

Packaging and storage—Preserve in well-closed containers.

USP REFERENCE STANDARDS (11)—

[USP Flunisolide RS](#)

Identification—

Change to read:

A: [▲ Spectroscopic Identification Tests \(197\), Infrared Spectroscopy: 197K](#) ▲ (CN 1-May-2020) .

Change to read:

B: [▲ SPECTROSCOPIC IDENTIFICATION TESTS \(197\), Ultraviolet-Visible Spectroscopy: 197U](#) ▲ (CN 1-May-2020) —

Solution: 10 μ g per mL.

Medium: methanol.

SPECIFIC ROTATION (781S): between +103° and +111°.

Test solution: 10 mg per mL, in chloroform.

LOSS ON DRYING (731)—Dry it in vacuum at 60° for 3 hours: it loses not more than 1.0% of its weight.

WATER DETERMINATION, Method I (921)—The anhydrous form contains not more than 1.0%. The hemihydrate form contains between 1.8% and 2.5% (determined on a dried specimen).

RESIDUE ON IGNITION (281): not more than 0.1% from 250 mg.

Chromatographic purity—

Standard solutions—Prepare a solution of [USP Flunisolide RS](#) in acetone to contain 10 mg per mL (*Standard solution A*). Dilute 1 mL of *Standard solution A* with acetone to 100 mL (*Standard solution B*).

Test preparation—Prepare a solution of Flunisolide in acetone to contain 10 mg per mL.

Procedure—Apply 10- μ L volumes of *Standard solution A*, *Standard solution B*, and the *Test preparation* to a suitable thin-layer chromatographic plate (see [Chromatography \(621\)](#)) coated with a 0.25-mm layer of chromatographic silica gel mixture. Place the plate in a suitable chromatographic chamber previously equilibrated with a mixture of toluene and alcohol (90:10), seal the chamber, and develop the chromatogram until the solvent front has moved three-fourths of the length of the plate. Remove the plate, allow the solvent to evaporate, and examine the plate under short-wavelength UV light: the R_F value of the principal spot obtained from the *Test preparation* corresponds to that obtained from *Standard solution A*. No secondary spot exhibits an intensity greater than that of the principal spot from *Standard solution B*.

Assay—

Mobile phase—Prepare a suitable degassed solution of water and acetonitrile (3:2) such that at an approximate flow rate of 1.6 mL per minute, the retention time of Flunisolide is about 6 minutes.

Standard preparation—Dissolve an accurately weighed quantity of [USP Flunisolide RS](#) in **Mobile phase** to obtain a solution having a known concentration of about 0.2 mg per mL.

Assay preparation—Using 20 mg of Flunisolide, accurately weighed, proceed as directed for **Standard preparation**.

Chromatographic system (see [Chromatography \(621\)](#))—The liquid chromatograph is equipped with a 254-nm detector and a 4-mm × 25-cm column that contains 5- to 10-μm packing L7. The flow rate is about 1.6 mL per minute. Chromatograph the *Standard preparation*, and record the peak response as directed for *Procedure*: the column efficiency is not less than 2700 theoretical plates; the tailing factor for the flunisolide peak is not more than 1.7; and the relative standard deviation for replicate injections is not more than 1.0%.

Procedure—Separately inject equal volumes (between 15 μL and 30 μL) of the *Standard preparation* and the *Assay preparation* into the chromatograph, record the chromatograms, and measure the responses for the major peaks. Calculate the quantity, in mg, of $C_{24}H_{31}FO_6$ in the portion of Flunisolide taken by the formula:

$$(434.51/443.51)100C(r_u/r_s)$$

in which 434.51 and 443.51 are the molecular weights of $C_{24}H_{31}FO_6$ and $C_{24}H_{31}FO_6 \cdot \frac{1}{2}H_2O$, respectively; C is the concentration, in mg per mL, of [USP Flunisolide RS](#) in the *Standard preparation*; and r_u and r_s are the peak responses obtained from the *Assay preparation* and the *Standard preparation*, respectively.

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
FLUNISOLIDE	Documentary Standards Support	SM52020 Small Molecules 5

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. Information currently unavailable

Current DocID: GUID-3750A7E9-0A6D-4FE8-8B3B-85C788CFA63B_2_en-US

DOI: https://doi.org/10.31003/USPNF_M33400_02_01

DOI ref: [hmo0d](#)