

Status: Currently Official on 14-Feb-2025
Official Date: Official as of 01-May-2020
Document Type: USP Monographs
DocId: GUID-E55F42F8-8E2A-4536-A5EB-FB62EA29CFE4_6_en-US
DOI: https://doi.org/10.31003/USPNF_M33310_06_01
DOI Ref: ng941

© 2025 USPC
Do not distribute

Fludarabine Phosphate

$C_{10}H_{13}FN_5O_7P$ 365.21

9H-Purin-6-amine, 2-fluoro-9-(5-O-phosphono-β-D-arabinofuranosyl)-;
9-β-D-Arabinofuranosyl-2-fluoroadenine 5'-dihydrogen phosphate CAS RN®: 75607-67-9; UNII: 1X9VK901SC.

DEFINITION

Fludarabine Phosphate contains NLT 98.0% and NMT 102.0% of fludarabine phosphate ($C_{10}H_{13}FN_5O_7P$), calculated on the anhydrous, solvent-free basis.

CAUTION—Fludarabine phosphate is potentially cytotoxic. Great care should be taken to prevent inhaling particles and exposing the skin to it.]

IDENTIFICATION

Change to read:

- A. ▲ [SPECTROSCOPIC IDENTIFICATION TESTS \(197\), Infrared Spectroscopy](#): 197A or 197K▲ (CN 1-May-2020)
- B. The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.

ASSAY

• PROCEDURE

Solution A: 10 mM [monobasic potassium phosphate](#)

Mobile phase: [Methanol](#) and *Solution A* (6:94)

Standard solution: 0.02 mg/mL of [USP Fludarabine Phosphate RS](#) in *Mobile phase*

Sample solution: 0.02 mg/mL of Fludarabine Phosphate in *Mobile phase*

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 260 nm

Column: 4.6-mm × 15-cm; 5-μm packing [L1](#)

Flow rate: 1.0 mL/min

Injection volume: 10 μL

System suitability

Sample: *Standard solution*

Suitability requirements

Relative standard deviation: NMT 1.0%

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of fludarabine phosphate ($C_{10}H_{13}FN_5O_7P$) in the portion of Fludarabine Phosphate taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_u = peak response from the *Sample solution*

r_s = peak response from the *Standard solution*

C_s = concentration of [USP Fludarabine Phosphate RS](#) in the *Standard solution* (mg/mL)

C_u = concentration of Fludarabine Phosphate in the *Sample solution* (mg/mL)

Acceptance criteria: 98.0%–102.0% on the anhydrous, solvent-free basis

IMPURITIES**• CHLORIDE****Standard stock solution:** 82.4 µg/mL of [sodium chloride](#) in [water](#)**Standard solution:** Transfer 2.0 mL of *Standard stock solution* to a test tube, add 13.0 mL of [water](#), and mix.**Sample solution:** Transfer 50.0 mg of Fludarabine Phosphate to a test tube, add 15 mL of water to dissolve, and heat gently if necessary.**Analysis:** Add 1.0 mL of [nitric acid](#) to the *Standard solution* and *Sample solution*, and place each in separate, colorless test tubes containing 1.0 mL of silver nitrate TS.**Acceptance criteria:** NMT 0.2%; the *Sample solution* shows less turbidity than the *Standard solution*.**• LIMIT OF FREE PHOSPHATE****Reagent solution:** Mix 4 g of finely powdered [ammonium molybdate](#) and 0.1 g of finely powdered [ammonium vanadate](#) in a 150-mL beaker.Add 70 mL of [water](#), and grind the particles using a glass rod. A clear solution is obtained within a few minutes. Add 20 mL of [nitric acid](#), adjust to room temperature, and dilute with [water](#) to 100 mL.**Standard solution:** 7.16 µg/mL of potassium dihydrogen phosphate in [water](#). Transfer 2.0 mL of this solution to a test tube.**Sample solution:** Transfer 10 mg of Fludarabine Phosphate in 2.0 mL of [water](#) to a test tube and heat gently.**Blank:** 2.0 mL of [water](#) in a test tube**Analysis:** To each of the test tubes containing the *Standard solution*, *Sample solution*, and *Blank*, add 2.0 mL of *Reagent solution*.**Acceptance criteria:** NMT 0.1%; the color of the *Standard solution* must be more intense than that of the *Blank*. Viewed downward in diffuse daylight against a white background, the yellow coloration of the *Sample solution* must not be more intense than that of the *Standard solution*.**• LIMIT OF SODIUM****Standard stock solution:** 2.54 mg/mL of [sodium chloride](#) in [water](#). [Sodium chloride](#) is previously dried at 105° for 2 h.**Standard solution:** 1 µg/mL of sodium in water, from *Standard stock solution***Sample solution:** 0.5 mg/mL of Fludarabine Phosphate in water**Instrumental conditions****Mode:** Flame photometry**Analytical wavelength:** Sodium emission line at 589.0 nm**Blank:** Water**Analysis****Samples:** *Standard solution* and *Sample solution***Acceptance criteria:** NMT 0.2%; the emission response of the *Sample solution* is NMT that of the *Standard solution*.**• ORGANIC IMPURITIES, PROCEDURE 1: EARLY-ELUTING IMPURITIES****Mobile phase, Standard solution, and Chromatographic system:** Proceed as directed in the Assay.**System suitability solution:** 10 mg of Fludarabine Phosphate in 10 mL of [0.1 N hydrochloric acid](#). Heat the solution at 80° in a water bath for 15 min.**Sensitivity solution:** 0.5 µg/mL of [USP Fludarabine Phosphate RS](#) in *Mobile phase*, from the *Standard solution***Sample solution:** 1 mg/mL of Fludarabine Phosphate in *Mobile phase***System suitability****Samples:** *Standard solution*, *System suitability solution*, and *Sensitivity solution***Suitability requirements****Resolution:** NLT 2.0 between the iso-ara-guanine monophosphate and isoguanine peaks, *System suitability solution***Relative standard deviation:** NMT 2.0%, *Standard solution***Signal-to-noise ratio:** NLT 10, *Sensitivity solution***Analysis****Sample:** *Sample solution*

Calculate the percentage of each early-eluting impurity in the portion of Fludarabine Phosphate taken:

$$\text{Result} = (r_u/r_s) \times (1/F_1) \times 100$$

 r_u = peak response of each individual impurity from the *Sample solution* r_s = peak response of fludarabine phosphate from the *Sample solution* F_1 = relative response factor for each individual impurity (see [Table 1](#))**Acceptance criteria:** See [Table 1](#).**Table 1**

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Iso-ara-guanine-monophosphate ^a	0.26	0.25	0.8
Isoguanine ^b	0.34	0.40	0.2
3',5'-Diphosphate analog ^c	0.42	0.53	0.4
Any individual, unspecified impurity	<1.0	1.0	0.1
Fludarabine phosphate	1.0	—	—

^a 6-Amino-9-β-D-arabinofuranosyl-2-oxo-1*H*-purine 5'- (dihydrogen phosphate).

^b 6-Amino-1*H*-purin-2(9*H*)-one.

^c 9-β-D-Arabinofuranosyl-2-fluoroadenine 3',5'-bis(dihydrogen phosphate).

• **ORGANIC IMPURITIES, PROCEDURE 2: LATE-ELUTING IMPURITIES**

Solvent A: 10 mM [monobasic potassium phosphate](#)

Mobile phase: [Methanol](#) and Solvent A (1:4)

Standard solution and Chromatographic system: Proceed as directed in the Assay.

Sensitivity solution and Sample solution: Prepare as directed in *Organic Impurities, Procedure 1: Early-Eluting Impurities*.

System suitability

Samples: Standard solution and Sensitivity solution

Suitability requirements

Tailing factor: NMT 2.0, Standard solution

Relative standard deviation: NMT 2.0%, Standard solution

Signal-to-noise ratio: NLT 10, Sensitivity solution

Analysis

Sample: Sample solution

Calculate the percentage of each late-eluting impurity in the portion of Fludarabine Phosphate taken:

$$\text{Result} = (r_u/r_s) \times (1/F_2) \times 100$$

r_u = peak response of each individual impurity from the Sample solution

r_s = peak response of fludarabine phosphate from the Sample solution

F_2 = relative response factor for each individual impurity (see [Table 2](#))

Acceptance criteria: See [Table 2](#).

Table 2

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Fludarabine phosphate	1.0	—	—
2-Fluoroadenine ^a	1.5	2.0	0.1
2-Fluoro-ara-adenine ^b	1.9	1.7	0.2
2-Ethoxyphosphate analog ^c	2.5	0.56	0.2

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Any individual, unspecified impurity	>1.0	1.0	0.1
Total unspecified impurities ^d	—	—	0.5
Total impurities ^e	—	—	1.5

^a 2-Fluoro-9*H*-purin-6-amine.^b 9- β -D-Arabinofuranosyl-2-fluoroadenine.^c 2-Ethoxy-9- β -D-arabinofuranosyladenine 5'- (dihydrogen phosphate).^d The sum of all unspecified impurities found in *Organic Impurities, Procedure 1: Early-Eluting Impurities* and *Organic Impurities, Procedure 2: Late-Eluting Impurities*.^e The sum of all impurities found in *Organic Impurities, Procedure 1: Early-Eluting Impurities* and *Organic Impurities, Procedure 2: Late-Eluting Impurities*.

• **LIMIT OF ALCOHOL**

Standard solution: 0.50 mg/mL of [alcohol](#) in [dimethylformamide](#)

Sample solution: 50 mg/mL of Fludarabine Phosphate in [dimethylformamide](#)

Blank: [Dimethylformamide](#)

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: GC equipped with a headspace injector

Detector: Flame ionization

Column: 0.25-mm \times 30-m; 1.4- μ m coating of phase [G43](#)

Temperatures

Injection port: 160°

Detector: 250°

Column: See [Table 3](#).

Table 3

Initial Temperature (°)	Temperature Ramp (°/min)	Final Temperature (°)	Hold Time at Final Temperature (min)
40	0	40	10
40	5	70	—
70	30	220	—

Carrier gas: Helium

Flow rate: 27 cm/s

Sample

Volume: 2 mL/vial. [NOTE—Seal the vials using a flanged cap so that the cap can no longer be turned.]

Conditioning temperature: 80°

Conditioning time: 60 min

Injection volume: 1.0 mL

System suitability

Samples: Standard solution and Blank

[NOTE—The retention time for alcohol is about 3 min.]

Suitability requirements

Relative standard deviation: NMT 4.0% for three injections, Standard solution

Peak interference: No peak at the retention time for alcohol, Blank

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of alcohol in the portion of Fludarabine Phosphate taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_u = peak area of alcohol from the *Sample solution*

r_s = peak area of alcohol from the *Standard solution*

C_s = concentration of alcohol in the *Standard solution* (mg/mL)

C_u = concentration of Fludarabine Phosphate in the *Sample solution* (mg/mL)

[NOTE—Use the percentage obtained to calculate the Assay result on the solvent-free basis.]

Acceptance criteria: NMT 1.0%

SPECIFIC TESTS

- [MICROBIAL ENUMERATION TESTS \(61\)](#) and [TESTS FOR SPECIFIED MICROORGANISMS \(62\)](#): The total aerobic microbial count is NMT 10^3 cfu/g.
- [OPTICAL ROTATION \(781S\), Procedures, Specific Rotation](#)

Sample solution: 5 mg/mL in water

Acceptance criteria: +10° to +14°

- [WATER DETERMINATION \(921\), Method I](#): NMT 3.0%

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in well-closed, light-resistant containers, and store in a refrigerator.
- [USP REFERENCE STANDARDS \(11\)](#)
[USP Fludarabine Phosphate RS](#)

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
FLUDARABINE PHOSPHATE	Documentary Standards Support	SM32020 Small Molecules 3

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 43(5)

Current DocID: [GUID-E55F42F8-8E2A-4536-A5EB-FB62EA29CFE4_6_en-US](#)

DOI: https://doi.org/10.31003/USPNF_M33310_06_01

DOI ref: [ng941](#)