

Status: Currently Official on 17-Feb-2025
 Official Date: Official as of 01-May-2020
 Document Type: USP Monographs
 DocId: GUID-734E3490-1F29-433A-B0E1-B6D32B07C4CB_4_en-US
 DOI: https://doi.org/10.31003/USPNF_M33178_04_01
 DOI Ref: n80hj

© 2025 USPC
 Do not distribute

Finasteride

$C_{23}H_{36}N_2O_2$ 372.54

4-Azaandrost-1-ene-17-carboxamide, *N*-(1,1-dimethylethyl)-3-oxo-, (5α,17β)-.

N-tert-Butyl-3-oxo-4-aza-5α-androst-1-ene-17β-carboxamide CAS RN®: 98319-26-7; UNII: 57GN057U7G.

» Finasteride contains not less than 98.5 percent and not more than 101.0 percent of $C_{23}H_{36}N_2O_2$, calculated on the anhydrous basis.

Packaging and storage—Preserve in tight containers, and store at controlled room temperature.

USP REFERENCE STANDARDS (11)—

[USP Finasteride RS](#)

Identification—

Change to read:

A: ▲ [Spectroscopic Identification Tests \(197\), Infrared Spectroscopy: 197M](#) ▲ (CN 1-May-2020) ·

B: The retention time of the major peak in the chromatogram of the *Assay preparation* corresponds to that in the chromatogram of the *Standard preparation*, as obtained in the *Assay*.

SPECIFIC ROTATION (781S): between -56.0° and -60.0° , determined at 405 nm.

Test solution: 10 mg per mL, in methanol.

WATER DETERMINATION, Method I (921): not more than 0.3%.

RESIDUE ON IGNITION (281): not more than 0.1%.

Chromatographic purity—

Mobile phase—Prepare a filtered and degassed mixture of water, tetrahydrofuran, and acetonitrile (8:1:1). Make adjustments if necessary (see *System Suitability* under [Chromatography \(621\)](#)).

Diluting solution—Prepare a solution of water and acetonitrile (1:1).

Standard solution—Dissolve an accurately weighed quantity of [USP Finasteride RS](#) in *Diluting solution*, and dilute quantitatively, and stepwise if necessary, with *Diluting solution* to obtain a solution having a known concentration of about 1.0 mg per mL.

Test solution—Transfer about 100 mg of Finasteride, accurately weighed, to a 100-mL volumetric flask, dissolve in and dilute with *Diluting solution* to volume, and mix.

Chromatographic system (see [CHROMATOGRAPHY \(621\)](#))—The liquid chromatograph is equipped with a 210-nm detector and a 4.6-mm \times 30-cm column that contains 4-μm packing L1. The flow rate is about 1.5 mL per minute. The column temperature is maintained at 60°.

Chromatograph the *Standard solution*, and record the peak responses as directed for *Procedure*: the column efficiency is not less than 10,000 theoretical plates; and the tailing factor is not more than 1.3.

Procedure—Inject a volume (about 15 μ L) of the *Test solution* into the chromatograph, record the chromatograms, and measure the peak responses. Calculate the percentage of each impurity in the portion of Finasteride taken by the formula:

$$100(r_i/r_s)$$

in which r_i is the peak response for each impurity, and r_s is the sum of the responses of all peaks: not more than 0.5% of any individual impurity is found; and not more than 1.0% of total impurities is found.

Assay—

Mobile phase—Prepare a filtered and degassed mixture of water and tetrahydrofuran (4:1). Make adjustments if necessary (see *System Suitability* under [Chromatography \(621\)](#)).

Diluting solution—Prepare a solution of water and acetonitrile (1:1).

Standard preparation—Dissolve an accurately weighed quantity of [USP Finasteride RS](#) in *Diluting solution*, and dilute quantitatively, and stepwise if necessary, with *Diluting solution* to obtain a solution having a known concentration of about 200 μ g per mL.

Assay preparation—Transfer about 20 mg of Finasteride, accurately weighed, to a 100-mL volumetric flask, dissolve in and dilute with *Diluting solution* to volume, and mix.

Chromatographic system (see [CHROMATOGRAPHY \(621\)](#))—The liquid chromatograph is equipped with a 215-nm detector and a 3.0-mm × 3.0-cm column that contains 3-μm packing L7. The flow rate is about 3 mL per minute. Chromatograph the *Standard preparation*, and record the peak responses as directed for *Procedure*: the column efficiency is not less than 1800 theoretical plates; the tailing factor is not more than 1.3; and the relative standard deviation for replicate injections is not more than 1.0%.

Procedure—Separately inject equal volumes (about 10 μL) of the *Standard preparation* and the *Assay preparation* into the chromatograph, record the chromatograms, and measure the responses for the major peaks. Calculate the quantity, in mg, of $C_{23}H_{36}N_2O_2$ in the portion of Finasteride taken by the formula:

$$100C(r_u/r_s)$$

in which C is the concentration, in mg per mL, of [USP Finasteride RS](#) in the *Standard preparation*; and r_u and r_s are the peak responses obtained from the *Assay preparation* and the *Standard preparation*, respectively.

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
FINASTERIDE	Documentary Standards Support	SM52020 Small Molecules 5
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM52020 Small Molecules 5

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 27(2)

Current DocID: GUID-734E3490-1F29-433A-B0E1-B6D32B07C4CB_4_en-US

DOI: https://doi.org/10.31003/USPNF_M33178_04_01

DOI ref: [n80hj](#)