

Status: Currently Official on 14-Feb-2025

Official Date: Official as of 01-Nov-2024

Document Type: USP Monographs

DocId: GUID-921E386F-235F-40B7-8A3E-369E08FDC1F3_7_en-US

DOI: https://doi.org/10.31003/USPNF_M33077_07_01

DOI Ref: 92enu

© 2025 USPC

Do not distribute

Fexofenadine Hydrochloride and Pseudoephedrine Hydrochloride Extended-Release Tablets

DEFINITION

Fexofenadine Hydrochloride and Pseudoephedrine Hydrochloride Extended-Release Tablets contain NLT 93.0% and NMT 107.0% of the labeled amounts of fexofenadine hydrochloride ($C_{32}H_{39}NO_4 \cdot HCl$) and pseudoephedrine hydrochloride ($C_{10}H_{15}NO \cdot HCl$).

IDENTIFICATION

Change to read:

- A. The retention times of the Δ fexofenadine and pseudoephedrine Δ (IRA 1-Nov-2024) peaks of the *Sample solution* correspond to those of the *Standard solution*, as obtained in the Assay.

Change to read:

- B. THIN-LAYER CHROMATOGRAPHIC IDENTIFICATION TEST (201)

Standard solution A: 6 mg/mL of USP Fexofenadine Hydrochloride RS in methanol

Standard solution B: 12 mg/mL of USP Pseudoephedrine Hydrochloride RS in methanol

Sample solution: Δ Nominally 6 mg/mL of fexofenadine hydrochloride and 12 mg/mL of pseudoephedrine hydrochloride from Tablets prepared as follows. Δ (IRA 1-Nov-2024) Transfer the equivalent of 30 mg of fexofenadine hydrochloride and 60 mg of pseudoephedrine hydrochloride from finely powdered Tablets (NLT 4) into a suitable vessel, and add 5 mL of methanol. Cap the vessel, and shake vigorously for 2 min. Pass the resulting suspension through a suitable filter of 0.45- μ m pore size. Use the filtrate.

Adsorbent: 0.2-mm layer of HPTLC silica gel mixture. Dry the plate at 105° for 1 h before use.

Application volume: 10 μ L

Developing solvent system: Toluene, dehydrated alcohol, and ammonium hydroxide (50:45:5)

Analysis: Proceed as directed, using the *Developing solvent system*. After removal of the plate, mark the solvent front, and allow the plate to air-dry. Heat the plate at 105° until the odor of ammonia disappears (about 5 min). Allow the plate to cool, and examine under UV light at 254 nm.

[**NOTE**—The R_F values for fexofenadine and pseudoephedrine are 0.17 and 0.39, respectively.]

Acceptance criteria: The R_F value of fexofenadine hydrochloride in the *Sample solution* is comparable to that of fexofenadine hydrochloride in *Standard solution A*. The R_F value of pseudoephedrine hydrochloride in the *Sample solution* is comparable to that of pseudoephedrine hydrochloride in *Standard solution B*.

ASSAY

Change to read:

• PROCEDURE 1

Buffer: Dissolve 6.8 g of sodium acetate and 16.22 g of sodium 1-octanesulfonate in water, and dilute with water to 1 L. Adjust with glacial acetic acid to a pH of 4.6.

Mobile phase: Methanol and *Buffer* Δ (65:35) Δ (IRA 1-Nov-2024)

System suitability solution: Transfer 40 mg of USP Pseudoephedrine Hydrochloride RS to a 50-mL volumetric flask. Add 5 mL of tert-butylhydroperoxide solution, and sonicate. Cover the flask opening with aluminum foil, and place the flask in an oven at 90° for 60 min. Remove from the oven, and allow to cool. Add 35 mL of *Mobile phase*, and cool to room temperature. Dilute with *Mobile phase* to volume. The degradation of pseudoephedrine hydrochloride by this process produces the related compound Δ methcathinone. Δ (IRA 1-Nov-2024)

Related compounds stock solution: Δ 0.2 mg/mL each of USP Fexofenadine Related Compound A RS and USP Fexofenadine Related Compound C RS prepared as follows. Transfer suitable Δ (IRA 1-Nov-2024) quantities of USP Fexofenadine Related Compound A RS and Δ USP Fexofenadine Related Compound C RS to a suitable volumetric flask. Dissolve in 65% of the flask volume of methanol and dilute with *Buffer* to volume. Δ (IRA 1-Nov-2024)

Related compounds solution: 0.02 mg/mL each of USP Fexofenadine Related Compound A RS and Δ USP Fexofenadine Related Compound C RS Δ (IRA 1-Nov-2024) from *Related compounds stock solution* Δ in Δ (IRA 1-Nov-2024) *Mobile phase*

Standard stock solution: 0.4 mg/mL of Δ (IRA 1-Nov-2024) [USP Fexofenadine Hydrochloride RS](#) and Δ 0.8 mg/mL of Δ (IRA 1-Nov-2024) [USP Pseudoephedrine Hydrochloride RS](#)

[Pseudoephedrine Hydrochloride RS](#), Δ (IRA 1-Nov-2024) in *Mobile phase*

Standard solution: Δ 0.048 mg/mL of [USP Fexofenadine Hydrochloride RS](#) and 0.096 mg/mL of [USP Pseudoephedrine Hydrochloride RS](#) from the *Standard stock solution*, and 0.006 mg/mL each of [USP Fexofenadine Related Compound A RS](#) and [USP Fexofenadine Related Compound C RS](#) from the *Related compounds solution in Mobile phase* Δ (IRA 1-Nov-2024)

Sample stock solution: Nominally Δ (IRA 1-Nov-2024) 1.2 mg/mL of fexofenadine hydrochloride and 2.4 mg/mL of pseudoephedrine hydrochloride Δ from Tablets prepared as follows. Δ (IRA 1-Nov-2024) Transfer NLT 10 whole Tablets to a 500-mL volumetric flask. Add 300 mL of [methanol](#), and shake by mechanical means at high speed for 60 min. Sonicate the flask for 60 min at 40°. Add 150 mL of *Buffer*, and sonicate for 60 min at 40°. Vent the flask, and vigorously shake the flask by hand at 15-min intervals during the mechanical shaking and sonication steps. Cool to room temperature, and dilute with *Buffer* to volume. Δ (IRA 1-Nov-2024) Pass a portion of this solution through a filter of 0.45- μ m or finer pore size, and use the filtrate. Δ [NOTE—Alternatively, centrifuge the *Sample stock solution*, and use the supernatant to prepare the *Sample solution*.] Δ (IRA 1-Nov-2024)

Sample solution: Δ Nominally Δ (IRA 1-Nov-2024) 0.048 and 0.096 mg/mL of fexofenadine hydrochloride and pseudoephedrine hydrochloride, respectively, from the *Sample stock solution* Δ in Δ (IRA 1-Nov-2024) *Mobile phase*. Δ Filter the *Sample solution* before analysis. Δ (IRA 1-Nov-2024)

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 215 nm

Column: 4.6-mm \times 5-cm; 5- μ m packing [L6](#) connected in series to a 4.6-mm \times 25-cm; 5- μ m packing [L11](#)

Column temperature: 35°

Flow rate: 1.5 mL/min

Injection volume: 20 μ L

System suitability

Samples: *System suitability solution* and *Standard solution*

[NOTE—The relative retention times for pseudoephedrine and Δ methcathinone Δ (IRA 1-Nov-2024) are 1.0 and 1.2, respectively (*System suitability solution*); and for fexofenadine, fexofenadine related compound A, and Δ fexofenadine related compound C are Δ (IRA 1-Nov-2024) 1.0, 1.2, and Δ 2.3, Δ (IRA 1-Nov-2024) respectively (*Standard solution*).]

Suitability requirements

Resolution: NLT 1.5 between pseudoephedrine and Δ methcathinone, Δ (IRA 1-Nov-2024) *System suitability solution*; NLT 2.0 between fexofenadine and fexofenadine related compound A, *Standard solution*

Relative standard deviation: NMT 1.0% for Δ (IRA 1-Nov-2024) pseudoephedrine, Δ *Standard solution*; Δ (IRA 1-Nov-2024) NMT 1.0% for Δ (IRA 1-Nov-2024) fexofenadine Δ (IRA 1-Nov-2024), *Standard solution*

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate Δ (IRA 1-Nov-2024) the percentage of the labeled amount of fexofenadine hydrochloride ($C_{32}H_{39}NO_4 \cdot HCl$) and pseudoephedrine hydrochloride ($C_{10}H_{15}NO \cdot HCl$) in the portion of Tablets taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_u = peak response of Δ (IRA 1-Nov-2024) fexofenadine or pseudoephedrine from the *Sample solution*

r_s = peak response of Δ (IRA 1-Nov-2024) fexofenadine or pseudoephedrine from the *Standard solution*

C_s = concentration of Δ (IRA 1-Nov-2024) [USP Fexofenadine Hydrochloride RS](#) or [USP Pseudoephedrine Hydrochloride RS](#) in the *Standard solution* (mg/mL)

C_u = nominal concentration of Δ (IRA 1-Nov-2024) fexofenadine hydrochloride or pseudoephedrine hydrochloride in the *Sample solution* (mg/mL)

Acceptance criteria: 93.0%–107.0%

Change to read:

- **PROCEDURE 2:** Use this procedure for Tablets labeled to meet *Dissolution Test 5*.

Buffer: Dissolve 6.8 g of [sodium acetate](#) and 16.22 g of [sodium 1-octanesulfonate](#) in [water](#), and dilute with [water](#) to 1 L. Adjust with [glacial acetic acid](#) to a pH of 4.0.

Mobile phase: [Methanol](#) and *Buffer* Δ (65:35) Δ (IRA 1-Nov-2024)

System suitability solution: Transfer 60 mg of [USP Pseudoephedrine Hydrochloride RS](#) to a 50-mL volumetric flask. Add 10 mL of hydrogen peroxide, and swirl the flask. Cover the flask opening with aluminum foil, and heat in an oven at 90° for 4 h. Add 35 mL of *Mobile phase*, and cool to room temperature. Dilute with *Mobile phase* to volume. The degradation of pseudoephedrine hydrochloride by this process produces the related compound ▲methcathinone.▲ (IRA 1-Nov-2024)

Related compounds stock solution: 0.225 mg/mL each of [USP Fexofenadine Related Compound A RS](#) and ▲[USP Fexofenadine Related Compound C RS](#)▲ (IRA 1-Nov-2024) prepared as follows. ▲Transfer suitable quantities of ▲ (IRA 1-Nov-2024) [USP Fexofenadine Related Compound A RS](#) and ▲[USP Fexofenadine Related Compound C RS](#) to a suitable volumetric flask. Dissolve in 65% of the flask volume of [methanol](#) and dilute with *Buffer* to volume.▲ (IRA 1-Nov-2024)

Related compounds solution: 0.0113 mg/mL each of [USP Fexofenadine Related Compound A RS](#) and ▲[USP Fexofenadine Related Compound C RS](#)▲ (IRA 1-Nov-2024) from *Related compounds stock solution* in *Mobile phase*

Standard stock solution: 0.36 mg/mL of [USP Fexofenadine Hydrochloride RS](#) and 0.48 mg/mL of [USP Pseudoephedrine Hydrochloride RS](#) in *Mobile phase*

Standard solution: 0.096 mg/mL of [USP Pseudoephedrine Hydrochloride RS](#), 0.072 mg/mL of [USP Fexofenadine Hydrochloride RS](#)▲ from the *Standard stock solution*,▲ (IRA 1-Nov-2024) and 0.002 mg/mL each of [USP Fexofenadine Related Compound A RS](#) and ▲[USP Fexofenadine Related Compound C RS](#) from the *Related compounds solution* in *Mobile phase*▲ (IRA 1-Nov-2024)

Sample stock solution: Nominally ▲▲ (IRA 1-Nov-2024) 0.36 mg/mL of fexofenadine hydrochloride and 0.48 mg/mL of pseudoephedrine hydrochloride ▲from Tablets.▲ (IRA 1-Nov-2024) prepared as follows. Crush NLT 10 Tablets into small pieces in a mortar, transfer the composite to a 500-mL volumetric flask, and add 325 mL of [methanol](#). Shake by mechanical means for at least 30 min, and sonicate for at least an additional 35 min. Add 100 mL of *Buffer*, sonicate for 45 min, cool to room temperature, and allow to stand for 16 h without mechanical shaking. Dilute with *Buffer* to volume. Pass a portion of this solution through a suitable filter of 0.45-μm or finer pore size. Transfer 5 mL of the filtrate to a 50-mL volumetric flask, and dilute with *Buffer* to volume.

Sample solution: ▲Nominally▲ (IRA 1-Nov-2024) 0.072 and 0.096 mg/mL of fexofenadine hydrochloride and pseudoephedrine hydrochloride, respectively, in *Mobile phase*, from the *Sample stock solution*

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 220 nm

Column: 4.6-mm × 5-cm; 5-μm packing [L6](#) connected in series to a 4.6-mm × 25-cm; 5-μm packing [L11](#)

Column temperature: 35°

Flow rate: 1.5 mL/min

Injection volume: 20 μL

System suitability

Samples: *System suitability solution* and *Standard solution*

▲[Note—The relative retention times for pseudoephedrine and methcathinone are 1.0 and 1.2, respectively, *System suitability solution*; and for fexofenadine, fexofenadine related compound A, and fexofenadine related compound C are 1.0, 1.2, and 2.3, respectively, *Standard solution*.]▲ (IRA 1-Nov-2024)

Suitability requirements

Resolution: NLT 2.0 between pseudoephedrine and ▲methcathinone,▲ (IRA 1-Nov-2024) *System suitability solution*; NLT 2.0 between fexofenadine and fexofenadine related compound A, *Standard solution*

Relative standard deviation: NMT 1.0% for ▲▲ (IRA 1-Nov-2024) pseudoephedrine, ▲*Standard solution*;▲ (IRA 1-Nov-2024) NMT 1.0% for ▲▲ (IRA 1-Nov-2024) fexofenadine, ▲▲ (IRA 1-Nov-2024) *Standard solution*

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate ▲▲ (IRA 1-Nov-2024) the percentage of the labeled amount of fexofenadine hydrochloride ($C_{32}H_{39}NO_4 \cdot HCl$) and pseudoephedrine hydrochloride ($C_{10}H_{15}NO \cdot HCl$) in the portion of Tablets taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_u = peak response of ▲▲ (IRA 1-Nov-2024) fexofenadine or pseudoephedrine from the *Sample solution*

r_s = peak response of ▲▲ (IRA 1-Nov-2024) fexofenadine or pseudoephedrine from the *Standard solution*

C_s = concentration of ▲▲ (IRA 1-Nov-2024) [USP Fexofenadine Hydrochloride RS](#) or [USP Pseudoephedrine Hydrochloride RS](#) in the *Standard solution* (mg/mL)

C_u = nominal concentration of Δ (IRA 1-Nov-2024) fexofenadine hydrochloride or pseudoephedrine hydrochloride in the *Sample solution* (mg/mL)

Acceptance criteria: 93.0%–107.0%

PERFORMANCE TESTS

Change to read:

- [Dissolution \(711\)](#).

Test 1

Medium: 0.001 N [hydrochloric acid](#); 900 mL

Apparatus 2: 50 rpm

Times

Fexofenadine hydrochloride: 15 and 45 min

Pseudoephedrine hydrochloride: 45 min; 3, 5, and 12 h

Solution A: 7.0 Δ g/L Δ (IRA 1-Nov-2024) of monobasic sodium phosphate monohydrate in [water](#). Adjust with Δ (IRA 1-Nov-2024) [phosphoric acid](#) to a pH of 2.00 \pm 0.05.

Mobile phase: [Acetonitrile](#) and **Solution A** Δ (45:55) Δ (IRA 1-Nov-2024)

Standard solution: Dissolve quantities of [USP Fexofenadine Hydrochloride RS](#) and [USP Pseudoephedrine Hydrochloride RS](#) in **Medium**, and dilute to obtain a solution containing known concentrations similar to those expected in the *Sample solution*. [NOTE—A small amount of [methanol](#), NMT 0.5% of the total volume, can be used to dissolve the fexofenadine hydrochloride.]

Sample solution: Pass a portion of the solution under test through a suitable nylon filter of 0.45- μ m pore size.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 210 nm

Column: 4.6-mm \times 25-cm; packing [L6](#)

Flow rate: 1 mL/min

Injection volume: 10 μ L

System suitability

Sample: *Standard solution*

Suitability requirements

Resolution: NLT 3.0 between fexofenadine and pseudoephedrine

Tailing factor: NMT 1.5 for fexofenadine and pseudoephedrine

Relative standard deviation: NMT 2.0% Δ for fexofenadine and pseudoephedrine Δ (IRA 1-Nov-2024)

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentages of the labeled amounts of fexofenadine hydrochloride ($C_{32}H_{39}NO_4 \cdot HCl$) and pseudoephedrine hydrochloride ($C_{10}H_{15}NO \cdot HCl$) dissolved.

Tolerances

Fexofenadine hydrochloride ($C_{32}H_{39}NO_4 \cdot HCl$): NLT 65% (Q) of the labeled amount is dissolved in 15 min, and NLT 80% (Q) of the labeled amount is dissolved in 45 min.

Pseudoephedrine hydrochloride ($C_{10}H_{15}NO \cdot HCl$): See [Table 1](#).

Table 1

Time	Amount Dissolved (%)
45 min	NMT 36
3 h	45–69
5 h	61–80
12 h	NLT 80

The percentages of the labeled amount of pseudoephedrine hydrochloride, dissolved at the times specified, conform to [Dissolution \(711\), Acceptance Table 2](#).

Test 2: If the product complies with this test, the labeling indicates that the product meets USP *Dissolution Test 2*.

Medium: 0.001 N [hydrochloric acid](#); 900 mL

Apparatus 2: 50 rpm

Times**Fexofenadine hydrochloride:** 45 min**Pseudoephedrine hydrochloride:** 30 min; 2, 4, and 12 h

Solution A: 2.7 ▲g/L▲ (IRA 1-Nov-2024) of monobasic potassium phosphate and 2.2 ▲g/L▲ (IRA 1-Nov-2024) of sodium 1-octanesulfonate in water. Adjust with phosphoric acid to a pH of 2.50 ± 0.05.

Mobile phase: Methanol, acetonitrile, and **Solution A** ▲(30:30:40)▲ (IRA 1-Nov-2024)

Fexofenadine standard stock solution: Transfer 66 mg of USP Fexofenadine Hydrochloride RS to a 100-mL volumetric flask. Add 10 mL of methanol, and swirl until dissolved. Add 50 mL of Medium, and mix. Allow the solution to equilibrate to room temperature, and dilute with Medium to volume.

Pseudoephedrine standard stock solution: Transfer 66 mg of USP Pseudoephedrine Hydrochloride RS to a 100-mL volumetric flask. Add 10 mL of methanol, and swirl until dissolved. Add 50 mL of Medium, and mix. Allow the solution to equilibrate to room temperature, and dilute with Medium to volume.

Standard solution: 66 µg/mL of USP Fexofenadine Hydrochloride RS and 132 µg/mL of USP Pseudoephedrine Hydrochloride RS from ▲ (IRA 1-Nov-2024) Fexofenadine standard stock solution and Pseudoephedrine standard stock solution ▲respectively, in ▲ (IRA 1-Nov-2024) Medium

Sample solution: Pass a portion of the solution under test through a suitable filter of 0.45-µm pore size.

Chromatographic system(See Chromatography (621), System Suitability.)**Mode:** LC**Detector:** UV 215 nm**Column:** 4.6-mm × 25-cm; 5-µm packing L7**Flow rate:** 1.5 mL/min**Injection volume:** 10 µL**System suitability****Sample:** Standard solution**Suitability requirements****Resolution:** NLT 2.0 between fexofenadine and pseudoephedrine**Tailing factor:** NMT 2.0 for fexofenadine and NMT 2.5 for pseudoephedrine**Relative standard deviation:** NMT 2.0% for ▲fexofenadine and pseudoephedrine▲ (IRA 1-Nov-2024)**Analysis****Samples:** Standard solution and Sample solution

Calculate the percentages of the labeled amounts of fexofenadine hydrochloride ($C_{32}H_{39}NO_4 \cdot HCl$) and pseudoephedrine hydrochloride ($C_{10}H_{15}NO \cdot HCl$) dissolved.

Tolerances**Fexofenadine hydrochloride** ($C_{32}H_{39}NO_4 \cdot HCl$): NLT 80% (Q) of the labeled amount is dissolved in 45 min.**Pseudoephedrine hydrochloride** ($C_{10}H_{15}NO \cdot HCl$): See Table 2.**Table 2**

Time	Amount Dissolved (%)
30 min	NMT 35
2 h	38–58
4 h	56–76
12 h	NLT 80

The percentages of the labeled amount of pseudoephedrine hydrochloride, dissolved at the times specified, conform to Dissolution (711), Acceptance Table 2.

Test 3: If the product complies with this test, the labeling indicates that the product meets USP *Dissolution Test 3*.

Medium: 0.001 N hydrochloric acid; 900 mL**Apparatus 2:** 50 rpm**Times****Fexofenadine hydrochloride:** 30 min

Pseudoephedrine hydrochloride: ▲30 min; ▲ (IRA 1-Nov-2024) 2, 4, and 12 h

Buffer solution: 6.64 g/L of monobasic sodium phosphate in [water](#). Adjust with [phosphoric acid](#) to a pH of 2.50 ± 0.05 .

Mobile phase: ▲[Acetonitrile](#) and [Buffer solution](#) (40:60) ▲ (IRA 1-Nov-2024)

Standard solution: [NOTE—A small amount of [methanol](#), not exceeding 0.5% of the final total volume, can be used to dissolve fexofenadine hydrochloride.] Prepare a solution in [Medium](#) containing known concentrations of [USP Fexofenadine Hydrochloride RS](#) and [USP Pseudoephedrine Hydrochloride RS](#) similar to those expected in the solution under test.

Sample solution: Pass a portion of the solution under test through a suitable PVDF or nylon filter of 0.45- μm pore size.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 210 nm

Column: 4.6-mm \times 25-cm; packing [L1](#)

Flow rate: 2.5 mL/min

Injection volume: 10 μL

System suitability

Sample: *Standard solution*

Suitability requirements

Tailing factor: NMT 2.0 for fexofenadine and pseudoephedrine

Relative standard deviation: NMT 2.0% for ▲fexofenadine and pseudoephedrine ▲ (IRA 1-Nov-2024)

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentages of the labeled amounts of fexofenadine hydrochloride ($\text{C}_{32}\text{H}_{39}\text{NO}_4 \cdot \text{HCl}$) and pseudoephedrine hydrochloride ($\text{C}_{10}\text{H}_{15}\text{NO} \cdot \text{HCl}$) dissolved.

Tolerances

Fexofenadine hydrochloride ($\text{C}_{32}\text{H}_{39}\text{NO}_4 \cdot \text{HCl}$): NLT 80% (Q) of the labeled amount is dissolved in 30 min.

Pseudoephedrine hydrochloride ($\text{C}_{10}\text{H}_{15}\text{NO} \cdot \text{HCl}$): See [Table 3](#).

Table 3

Time ▲ (IRA 1-Nov-2024)	Amount Dissolved (%)
▲30 min ▲ (IRA 1-Nov-2024)	13–33
2 ▲h ▲ (IRA 1-Nov-2024)	35–55
4 ▲h ▲ (IRA 1-Nov-2024)	50–70
12 ▲h ▲ (IRA 1-Nov-2024)	NLT 80

The percentages of the labeled amount of pseudoephedrine hydrochloride, dissolved at the times specified, conform to [Dissolution \(711\), Acceptance Table 2](#).

Test 4: For products labeled with a dosing interval of 24 h. If the product complies with this test, the labeling indicates that the product meets USP Dissolution Test 4.

Medium: 0.001 N [hydrochloric acid](#); 900 mL

Apparatus 2: 50 rpm

Times

Fexofenadine hydrochloride: 30 min

Pseudoephedrine hydrochloride: 3, 7, and 23 h

Determine the percentages of the labeled amounts of fexofenadine hydrochloride and pseudoephedrine hydrochloride dissolved by using the chromatographic procedure described in *Test 1*.

Tolerances

Fexofenadine hydrochloride ($\text{C}_{32}\text{H}_{39}\text{NO}_4 \cdot \text{HCl}$): NLT 80% (Q) of the labeled amount is dissolved in 30 min.

Pseudoephedrine hydrochloride ($\text{C}_{10}\text{H}_{15}\text{NO} \cdot \text{HCl}$): See [Table 4](#).

Table 4

Time (h)	Amount Dissolved (%)
3	10–30
7	35–65
23	NLT 80

The percentages of the labeled amount of pseudoephedrine hydrochloride, dissolved at the times specified, conform to [Dissolution \(711\), Acceptance Table 2](#).

Test 5: For products labeled with a dosing interval of 24 h. If the product complies with this test, the labeling indicates that the product meets USP Dissolution Test 5.

Medium: 0.001 N [hydrochloric acid](#); 900 mL deaerated

Apparatus 2: 50 rpm, with sinkers¹

Times

Fexofenadine hydrochloride: 15 and 45 min

Pseudoephedrine hydrochloride: 3, 7, and 23 h

Buffer: 4.1 g/L of [anhydrous sodium acetate](#) in [water](#). Adjust with [glacial acetic acid](#) to a pH of 3.6 ± 0.1 .

Mobile phase: [Methanol](#) and **Buffer** (60:40)

Standard solution: Prepare a solution in **Medium** containing 0.20 mg/mL of [USP Fexofenadine Hydrochloride RS](#) and 0.27 mg/mL of [USP Pseudoephedrine Hydrochloride RS](#). Sonicate to dissolve.

Sample solution: Pass a portion of the solution under test through a suitable filter of 0.45- μm pore size.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 254 nm

Column: 4.6-mm \times 10-cm; 5- μm packing [L9](#)

Column temperature: 40°

Flow rate: 2 mL/min

Injection volume: 50 μL

System suitability

Sample: *Standard solution*

[**NOTE**—The relative retention times for fexofenadine and pseudoephedrine are 0.45 and 1.0, respectively.]

Suitability requirements

Resolution: NLT 2.0 between fexofenadine and pseudoephedrine

Tailing factor: NMT 2.0 for fexofenadine and pseudoephedrine

Relative standard deviation: NMT 1.5% for fexofenadine and pseudoephedrine

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the concentration (C_1) of fexofenadine hydrochloride ($\text{C}_{32}\text{H}_{39}\text{NO}_4 \cdot \text{HCl}$) in the sample withdrawn from the vessel at each time

point (i) Δ (IRA 1-Nov-2024) :

$$\text{Result}_i = (r_U/r_S) \times C_S$$

r_U = peak response of fexofenadine from the *Sample solution*

r_S = peak response of fexofenadine from the *Standard solution*

C_S = concentration of [USP Fexofenadine Hydrochloride RS](#) in the *Standard solution* (mg/mL)

Calculate the percentage of the labeled amount Δ (IRA 1-Nov-2024) of fexofenadine hydrochloride ($\text{C}_{32}\text{H}_{39}\text{NO}_4 \cdot \text{HCl}$) dissolved at each time point (i) Δ (IRA 1-Nov-2024) :

$$\text{Result}_1 = C_1 \times V \times (1/L) \times 100$$

$$\text{Result}_2 = \{[C_2 \times (V - V_S)] + (C_1 \times V_S)\} \times (1/L) \times 100$$

C_i = concentration of fexofenadine hydrochloride in the portion of sample withdrawn at time point (i) (mg/mL)

V = volume of *Medium*, 900 mL

L = label claim for fexofenadine hydrochloride (mg/Tablet)

V_s = volume of the *Sample solution* withdrawn from the *Medium* (mL)

Calculate the concentration (*C_i*) of pseudoephedrine hydrochloride ($C_{10}H_{15}NO \cdot HCl$) in the sample withdrawn from the vessel at each time point (i) Δ (IRA 1-Nov-2024):

$$Result_i = (r_U/r_S) \times C_S$$

r_U = peak response of pseudoephedrine from the *Sample solution*

r_S = peak response of pseudoephedrine from the *Standard solution*

C_S = concentration of [USP Pseudoephedrine Hydrochloride RS](#) in the *Standard solution* (mg/mL)

Calculate the percentage of the labeled amount Δ (IRA 1-Nov-2024) of pseudoephedrine hydrochloride ($C_{10}H_{15}NO \cdot HCl$) dissolved at each time point (i) Δ (IRA 1-Nov-2024):

$$Result_1 = C_1 \times V \times (1/L) \times 100$$

$$Result_2 = \{[C_2 \times (V - V_S)] + (C_1 \times V_S)\} \times (1/L) \times 100$$

$$Result_3 = \{(C_3 \times [V - (2 \times V_S)]) + [(C_2 + C_1) \times V_S]\} \times (1/L) \times 100$$

C_i = concentration of pseudoephedrine hydrochloride in the portion of sample withdrawn at time point (i) (mg/mL)

V = volume of *Medium*, 900 mL

L = label claim for pseudoephedrine hydrochloride (mg/Tablet)

V_s = volume of the *Sample solution* withdrawn from the *Medium* (mL)

Tolerances

Fexofenadine hydrochloride ($C_{32}H_{39}NO_4 \cdot HCl$): See [Table 5](#).

Table 5

Time Point (i)	Time (min)	Amount Dissolved (%)
1	15	NLT 60 (Q)
2	45	NLT 75 (Q)

Pseudoephedrine hydrochloride ($C_{10}H_{15}NO \cdot HCl$): See [Table 6](#).

Table 6

Time Point (i)	Time (h)	Amount Dissolved (%)
1	3	10–34
2	7	35–68
3	23	NLT 80

The percentages of the labeled amount of pseudoephedrine hydrochloride, dissolved at the times specified, conform to [Dissolution \(711\), Acceptance Table 2](#).

Test 6: If the product complies with this test, the labeling indicates that the product meets USP *Dissolution Test 6*.

Medium: 0.001 N [hydrochloric acid](#); 900 mL

Apparatus 2: 50 rpm

Times

Fexofenadine hydrochloride: 45 min

Pseudoephedrine hydrochloride: 30 min; 2, 4, and 12 h

Solution A: 7 g/L of monobasic sodium phosphate in [water](#). Adjust with Δ (IRA 1-Nov-2024) [phosphoric acid](#) to a pH of 2.00.

Mobile phase: [Acetonitrile](#) and *Solution A* (45:55)

Standard solution: 0.07 mg/mL of [USP Fexofenadine Hydrochloride RS](#) and 0.13 mg/mL of [USP Pseudoephedrine Hydrochloride RS](#), prepared as follows. Dissolve appropriate quantities of [USP Fexofenadine Hydrochloride RS](#) and [USP Pseudoephedrine Hydrochloride RS](#) in a small amount of [methanol](#), NMT 0.8% of the final volume, and add 40% of the final volume of *Medium*. Sonicate to dissolve and dilute with *Medium* to volume.

Sample solution: Pass a portion of the solution under test through a suitable filter of 0.45- μ m pore size.

Chromatographic system

(See [Chromatography \(621\)](#), [System Suitability](#).)

Mode: LC

Detector: UV 210 nm

Column: 4.6-mm \times 25-cm; 10- μ m packing [L6](#)

Flow rate: 1 mL/min

Injection volume: 10 μ L

System suitability

Sample: *Standard solution*

Suitability requirements

Resolution: NLT 3.0 between fexofenadine and pseudoephedrine Δ (IRA 1-Nov-2024)

Tailing factor: NMT 2.0 for Δ (IRA 1-Nov-2024) fexofenadine and pseudoephedrine Δ (IRA 1-Nov-2024)

Relative standard deviation: NMT 2.0% for Δ fexofenadine and pseudoephedrine Δ (IRA 1-Nov-2024)

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of the labeled amount of fexofenadine hydrochloride ($C_{32}H_{39}NO_4 \cdot HCl$) dissolved:

$$\text{Result} = (r_U/r_S) \times C_S \times V \times (1/L) \times 100$$

r_U = peak response of fexofenadine from the *Sample solution*

r_S = peak response of fexofenadine from the *Standard solution*

C_S = concentration of [USP Fexofenadine Hydrochloride RS](#) in the *Standard solution* (mg/mL)

V = volume of *Medium*, 900 mL

L = label claim for fexofenadine hydrochloride (mg/Tablet)

Calculate the concentration (C_i) of pseudoephedrine hydrochloride ($C_{10}H_{15}NO \cdot HCl$) in the sample withdrawn from the vessel at each

time point (i) Δ (IRA 1-Nov-2024):

$$\text{Result}_i = (r_U/r_S) \times C_S$$

r_U = peak response of pseudoephedrine from the *Sample solution*

r_S = peak response of pseudoephedrine from the *Standard solution*

C_S = concentration of [USP Pseudoephedrine Hydrochloride RS](#) in the *Standard solution* (mg/mL)

Calculate the percentage of the labeled amount of pseudoephedrine hydrochloride ($C_{10}H_{15}NO \cdot HCl$) dissolved at each time point (i) Δ

(IRA 1-Nov-2024):

$$\text{Result}_1 = C_1 \times V \times (1/L) \times 100$$

$$\text{Result}_2 = \{[C_2 \times (V - V_S)] + (C_1 \times V_S)\} \times (1/L) \times 100$$

$$\text{Result}_3 = \{(C_3 \times [V - (2 \times V_S)]) + [(C_2 + C_1) \times V_S]\} \times (1/L) \times 100$$

$$\text{Result}_4 = \{(C_4 \times [V - (3 \times V_S)]) + [(C_3 + C_2 + C_1) \times V_S]\} \times (1/L) \times 100$$

C_i = concentration of pseudoephedrine hydrochloride in the portion of sample withdrawn at time point (i) (mg/mL)

V = volume of *Medium*, 900 mL

L = label claim for pseudoephedrine hydrochloride (mg/Tablet) V_s = volume of the *Sample solution* withdrawn from the *Medium* (mL)**Tolerances****Fexofenadine hydrochloride** ($C_{32}H_{39}NO_4 \cdot HCl$): NLT 80% (*Q*) of the labeled amount is dissolved.**Pseudoephedrine hydrochloride** ($C_{10}H_{15}NO \cdot HCl$): See [Table 7](#).**Table 7**

Time Point (<i>i</i>)	Time ▲ (IRA 1-Nov-2024)	Amount Dissolved (%)
1	▲30 min▲ (IRA 1-Nov-2024)	NMT 35
2	2▲h▲ (IRA 1-Nov-2024)	45–65
3	4▲h▲ (IRA 1-Nov-2024)	60–80
4	12▲h▲ (IRA 1-Nov-2024)	NLT 80

The percentages of the labeled amount of pseudoephedrine hydrochloride, dissolved at the times specified, conform to [Dissolution \(711\), Acceptance Table 2](#).

Test 7: If the product complies with this test, the labeling indicates that the product meets USP *Dissolution Test 7*.

Medium: 0.001 N [hydrochloric acid](#); 900 mL

Apparatus 2: 50 rpm

Times

Fexofenadine hydrochloride: 20 min

Pseudoephedrine hydrochloride: 45 min; 3, 5, and 12 h

Solution A: 7.0 g/L of [monobasic sodium phosphate monohydrate](#) in [water](#). Adjust with [phosphoric acid](#) to a pH of 2.0.

Mobile phase: [Acetonitrile](#) and [Solution A](#) (45:55)

Standard stock solution A: 0.7 mg/mL of [USP Fexofenadine Hydrochloride RS](#), prepared as follows. Transfer a quantity of [USP Fexofenadine Hydrochloride RS](#) to a suitable volumetric flask. Add [methanol](#), NMT 5% of the Δ flask▲ (IRA 1-Nov-2024) volume, and sonicate to dissolve. Dilute with *Medium* to volume.

Standard stock solution B: 1.3 mg/mL of [USP Pseudoephedrine Hydrochloride RS](#) in *Medium*. Sonicate to dissolve if necessary.

Standard solution: 0.07 mg/mL of [USP Fexofenadine Hydrochloride RS](#) and 0.13 mg/mL of [USP Pseudoephedrine Hydrochloride RS](#) in *Medium*, from *Standard stock solution A* and *Standard stock solution B*

Sample solution: Withdraw and pass a portion of the solution under test through a suitable nylon filter of 0.45- μ m pore size. Replace the portion removed with the same volume of *Medium*.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 210 nm

Column: 4.6-mm \times 25-cm; 10- μ m packing [L6](#)

Flow rate: 1 mL/min

Injection volume: 10 μ L

Run time: NLT 1.5 times the retention time of Δ ▲ (IRA 1-Nov-2024) pseudoephedrine▲ (IRA 1-Nov-2024)

System suitability

Sample: *Standard solution*

Suitability requirements

Resolution: NLT 3.0 between fexofenadine and pseudoephedrine

Tailing factor: NMT 1.5 for fexofenadine and pseudoephedrine

Relative standard deviation: NMT 2.0% Δ for fexofenadine and pseudoephedrine▲ (IRA 1-Nov-2024)

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of the labeled amount of fexofenadine hydrochloride ($C_{32}H_{39}NO_4 \cdot HCl$) dissolved:

$$\text{Result} = (r_u/r_s) \times C_s \times V \times (1/L) \times 100$$

r_U = peak response of fexofenadine from the *Sample solution*

r_S = peak response of fexofenadine from the *Standard solution*

C_S = concentration of [USP Fexofenadine Hydrochloride RS](#) in the *Standard solution* (mg/mL)

V = volume of *Medium*, 900 mL

L = label claim for fexofenadine hydrochloride (mg/Tablet)

Calculate the concentration (C_i) of pseudoephedrine hydrochloride ($C_{10}H_{15}NO \cdot HCl$) in the sample withdrawn from the vessel at each time point (i) Δ (IRA 1-Nov-2024) :

$$\text{Result}_i = (r_U/r_S) \times C_S$$

r_U = peak response of pseudoephedrine from the *Sample solution*

r_S = peak response of pseudoephedrine from the *Standard solution*

C_S = concentration of [USP Pseudoephedrine Hydrochloride RS](#) in the *Standard solution* (mg/mL)

[NOTE— Result_1 is used as calculation correction (C_1) for subsequent withdrawal time points.]

Calculate the percentage of the labeled amount of pseudoephedrine hydrochloride ($C_{10}H_{15}NO \cdot HCl$) dissolved at each time point (i) Δ (IRA 1-Nov-2024) :

$$\text{Result}_1 = C_1 \times V \times (1/L) \times 100$$

$$\text{Result}_2 = [(C_2 \times V) + (C_1 \times V_S)] \times (1/L) \times 100$$

$$\text{Result}_3 = \{(C_3 \times V) + [(C_2 + C_1) \times V_S]\} \times (1/L) \times 100$$

$$\text{Result}_4 = \{(C_4 \times V) + [(C_3 + C_2 + C_1) \times V_S]\} \times (1/L) \times 100$$

$$\text{Result}_5 = \{(C_5 \times V) + [(C_4 + C_3 + C_2 + C_1) \times V_S]\} \times (1/L) \times 100$$

C_i = concentration of pseudoephedrine hydrochloride in the portion of sample withdrawn at time point (i) (mg/mL)

V = volume of *Medium*, 900 mL

L = label claim for pseudoephedrine hydrochloride (mg/Tablet)

V_S = volume of the *Sample solution* withdrawn from the *Medium* (mL)

Tolerances

Fexofenadine hydrochloride ($C_{32}H_{39}NO_4 \cdot HCl$): NLT 80% (Q) of the labeled amount is dissolved in 20 min.

Pseudoephedrine hydrochloride ($C_{10}H_{15}NO \cdot HCl$): See [Table 8](#).

Table 8

Time Point (i)	Time	Amount Dissolved (%)
1 ^a	20 min	—
2	45 min	NMT 34
3	3 h	41–61
4	5 h	57–77
5	12 h	NLT 80

^a The first time point is used as calculation correction (C_1) for subsequent withdrawal time points.

The percentages of the labeled amount of pseudoephedrine hydrochloride, dissolved at the times specified, conform to [Dissolution \(711\)](#), [Acceptance Table 2](#).

Test 8: If the product complies with this test, the labeling indicates that the product meets USP *Dissolution Test 8*.

Medium: 0.001 N [hydrochloric acid](#), 900 mL

Apparatus 1: 10-mesh basket, 100 rpm

Times

Fexofenadine hydrochloride: 20 min

Pseudoephedrine hydrochloride: 3, 7, and 23 h

Buffer: 7.0 g of [monobasic sodium phosphate](#) in 1 L of [water](#). Adjust with [phosphoric acid](#) to a pH of 2.0.

Mobile phase: [Acetonitrile](#) and **Buffer** (45:55)

Standard solution: 0.2 mg/mL of [USP Fexofenadine Hydrochloride RS](#) and 0.27 mg/mL of [USP Pseudoephedrine Hydrochloride RS](#),

prepared as follows. Transfer a quantity of [USP Fexofenadine Hydrochloride RS](#) and [USP Pseudoephedrine Hydrochloride RS](#) to a suitable volumetric flask, and add 0.8% of the flask volume of [methanol](#). Add 40% of the flask volume of the **Medium** and sonicate to dissolve.

Dilute with **Medium** to volume.

Sample solution: Pass a portion of the solution under test through a suitable filter.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 210 nm

Column: 4.6-mm × 25-cm; 10-μm packing [L6](#)

Flow rate: 1 mL/min

Injection volume: 10 μL

Run time: NLT 1.7 times the retention time of the pseudoephedrine peak

System suitability

Sample: *Standard solution*

Suitability requirements

Resolution: NLT 3.0 between fexofenadine and pseudoephedrine

Tailing factor: NMT 2.0 for fexofenadine and pseudoephedrine

Relative standard deviation: NMT 2.0% for fexofenadine and pseudoephedrine

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of the labeled amount of fexofenadine hydrochloride ($C_{32}H_{39}NO_4 \cdot HCl$) dissolved:

$$\text{Result} = (r_U/r_S) \times C_S \times V \times (1/L) \times 100$$

r_U = peak response of fexofenadine from the *Sample solution*

r_S = peak response of fexofenadine from the *Standard solution*

C_S = concentration of [USP Fexofenadine Hydrochloride RS](#) in the *Standard solution* (mg/mL)

V = volume of **Medium**, 900 mL

L = label claim for fexofenadine hydrochloride (mg/Tablet)

Determine the concentration (C_i) of pseudoephedrine hydrochloride ($C_{10}H_{15}NO \cdot HCl$) in the sample withdrawn from the vessel at each time point (i):

$$\text{Result}_i = (r_U/r_S) \times C_S$$

r_U = peak response of pseudoephedrine from the *Sample solution*

r_S = peak response of pseudoephedrine from the *Standard solution*

C_S = concentration of [USP Pseudoephedrine Hydrochloride RS](#) in the *Standard solution* (mg/mL)

Calculate the percentage of the labeled amount of pseudoephedrine hydrochloride ($C_{10}H_{15}NO \cdot HCl$) dissolved at each time point (i):

$$\text{Result}_1 = C_1 \times V \times (1/L) \times 100$$

$$\text{Result}_2 = [(C_2 \times V) + (C_1 \times V_S)] \times (1/L) \times 100$$

$$\text{Result}_3 = \{(C_3 \times V) + [(C_2 + C_1) \times V_S]\} \times (1/L) \times 100$$

$$\text{Result}_4 = \{(C_4 \times V) + [(C_3 + C_2 + C_1) \times V_S]\} \times (1/L) \times 100$$

C_i = concentration of pseudoephedrine hydrochloride in the portion of sample withdrawn at each time point (mg/mL)

V = volume of *Medium*, 900 mL L = label claim for pseudoephedrine hydrochloride (mg/Tablet) V_s = volume of the *Sample solution* withdrawn at each time point and replaced with *Medium* (mL)**Tolerances:** For Tablets labeled to contain 180 mg of fexofenadine hydrochloride and 240 mg of pseudoephedrine hydrochloride.**Fexofenadine hydrochloride:** NLT 80% (Q) of the labeled amount is dissolved in 20 min.**Pseudoephedrine hydrochloride:** See [Table 9](#).**Table 9**

Time Point (<i>i</i>)	Time	Amount Dissolved (%)
1 ^a	20 min	—
2	3 h	10–30
3	7 h	40–60
4	23 h	NLT 80

^a The first time point is used as calculation correction (C_1) for subsequent withdrawal time points.The percentages of the labeled amount of pseudoephedrine hydrochloride, dissolved at the times specified, conform to [Dissolution \(711\), Acceptance Table 2](#).**Test 9:** If the product complies with this test, the labeling indicates that the product meets USP *Dissolution Test 9*.**Medium:** 0.001 N [hydrochloric acid](#), 900 mL**Apparatus 2****Fexofenadine hydrochloride:** 50 rpm**Pseudoephedrine hydrochloride:** 50 rpm, with suitable sinkers**Times****Fexofenadine hydrochloride:** 30 min**Pseudoephedrine hydrochloride:** 30 min; 2, 4, and 12 h**Buffer:** 7.0 g of [monobasic sodium phosphate](#) in 1 L of [water](#). Adjust with [phosphoric acid](#) to a pH of 2.0.**Mobile phase:** [Acetonitrile](#) and **Buffer** (45:55)**Standard stock solution A:** 0.7 mg/mL of [USP Fexofenadine Hydrochloride RS](#), prepared as follows. Transfer a quantity of [USP Fexofenadine Hydrochloride RS](#) to a suitable volumetric flask. Add 8% of the flask volume of [methanol](#) and sonicate to dissolve. Dilute with *Medium* to volume.**Standard stock solution B:** 1.3 mg/mL of [USP Pseudoephedrine Hydrochloride RS](#), prepared as follows. Transfer a quantity of [USP Pseudoephedrine Hydrochloride RS](#) to a suitable volumetric flask. Add 8% of the flask volume of [methanol](#) and sonicate to dissolve. Dilute with *Medium* to volume.**Standard solution:** 0.07 mg/mL of [USP Fexofenadine Hydrochloride RS](#) and 0.13 mg/mL of [USP Pseudoephedrine Hydrochloride RS](#) from **Standard stock solution A** and **Standard stock solution B** in *Medium***Sample solution:** Pass a portion of the solution under test through a suitable filter.**Chromatographic system**(See [Chromatography \(621\), System Suitability](#).)**Mode:** LC**Detector:** UV 210 nm**Column:** 4.6-mm × 25-cm; 10-μm packing [L6](#)**Flow rate:** 1 mL/min**Injection volume:** 10 μL**Run time:** NLT 1.5 times the retention time of the pseudoephedrine peak**System suitability****Sample:** *Standard solution***Suitability requirements****Resolution:** NLT 3.0 between fexofenadine and pseudoephedrine**Tailing factor:** NMT 2.0 for fexofenadine and pseudoephedrine**Relative standard deviation:** NMT 2.0% for fexofenadine and pseudoephedrine**Analysis****Samples:** *Standard solution* and *Sample solution*

Calculate the percentage of the labeled amount of fexofenadine hydrochloride ($C_{32}H_{39}NO_4 \cdot HCl$) dissolved:

$$\text{Result} = (r_u/r_s) \times C_s \times V \times (1/L) \times 100$$

 r_u = peak response of fexofenadine from the *Sample solution* r_s = peak response of fexofenadine from the *Standard solution* C_s = concentration of [USP Fexofenadine Hydrochloride RS](#) in the *Standard solution* (mg/mL) V = volume of *Medium*, 900 mL L = label claim for fexofenadine hydrochloride (mg/Tablet)Determine the concentration (C_i) of pseudoephedrine hydrochloride ($C_{10}H_{15}NO \cdot HCl$) in the sample withdrawn from the vessel at each time point (i):

$$\text{Result}_i = (r_u/r_s) \times C_s$$

 r_u = peak response of pseudoephedrine from the *Sample solution* r_s = peak response of pseudoephedrine from the *Standard solution* C_s = concentration of [USP Pseudoephedrine Hydrochloride RS](#) in the *Standard solution* (mg/mL)Calculate the percentage of the labeled amount of pseudoephedrine hydrochloride ($C_{10}H_{15}NO \cdot HCl$) dissolved at each time point (i):

$$\text{Result}_1 = C_1 \times V \times (1/L) \times 100$$

$$\text{Result}_2 = [(C_2 \times V) + (C_1 \times V_s)] \times (1/L) \times 100$$

$$\text{Result}_3 = \{(C_3 \times V) + [(C_2 + C_1) \times V_s]\} \times (1/L) \times 100$$

$$\text{Result}_4 = \{(C_4 \times V) + [(C_3 + C_2 + C_1) \times V_s]\} \times (1/L) \times 100$$

 C_i = concentration of pseudoephedrine hydrochloride in the portion of sample withdrawn at each time point (mg/mL) V = volume of *Medium*, 900 mL L = label claim for pseudoephedrine hydrochloride (mg/Tablet) V_s = volume of the *Sample solution* withdrawn at each time point and replaced with *Medium* (mL)**Tolerances:** For Tablets labeled to contain 60 mg of fexofenadine hydrochloride and 120 mg of pseudoephedrine hydrochloride.**Fexofenadine hydrochloride:** NLT 80% (Q) of the labeled amount is dissolved in 30 min.**Pseudoephedrine hydrochloride:** See [Table 10](#).**Table 10**

Time Point (i)	Time	Amount Dissolved (%)
1	30 min	8–28
2	2 h	34–54
3	4 h	56–76
4	12 h	NLT 80

The percentages of the labeled amount of pseudoephedrine hydrochloride, dissolved at the times specified, conform to [Dissolution \(711\)](#), [Acceptance Table 2](#).

- **UNIFORMITY OF DOSAGE UNITS (905):** Meet the requirements

IMPURITIES[NOTE—On the basis of knowledge of the product, perform either: (a) *Organic Impurities, Procedure 1* or (b) *Organic Impurities, Procedure 2*; *Organic Impurities, Procedure 3*; and *Organic Impurities, Procedure 4*.]**Change to read:**

• ORGANIC IMPURITIES, PROCEDURE 1

Buffer, Mobile phase, ▲ (IRA 1-Nov-2024) System suitability solution, Related compounds stock solution, Related compounds solution,**Standard stock solution, Standard solution, and Chromatographic system:** Proceed as directed in the Assay, Procedure 1.**▲Sensitivity solution:** 1.2 µg/mL of [USP Fexofenadine Hydrochloride RS](#) and 2.4 µg/mL of [USP Pseudoephedrine Hydrochloride RS](#) from the Standard stock solution in Mobile phase▲ (IRA 1-Nov-2024)**Sample solution:** ▲Nominally 1.2 mg/mL of fexofenadine hydrochloride and 2.4 mg/mL of pseudoephedrine hydrochloride from Tablets prepared as follows. Transfer whole Tablets (NLT 10) to a 500-mL volumetric flask. Add 300 mL of [methanol](#) and shake by mechanical means at high speed for 60 min. Sonicate the flask for 60 min at 40°. Add 150 mL of *Buffer* and sonicate for 60 min at 40°. Vent the flask, and vigorously shake the flask by hand at 15-min intervals during the mechanical shaking and sonication steps. Cool to room temperature and dilute with *Buffer* to volume. Pass a portion of this solution through a filter of 0.45-µm or finer pore size and use the filtrate. [NOTE—Alternatively, centrifuge the solution and use the supernatant.]▲ (IRA 1-Nov-2024)**Reference solution:** ▲0.048 mg/mL of fexofenadine hydrochloride and 0.096 mg/mL of pseudoephedrine hydrochloride from the *Sample solution* in *Mobile phase*. Filter the solution before analysis.▲ (IRA 1-Nov-2024)**System suitability****Samples:** System suitability solution, Standard solution, and ▲Sensitivity solution▲ (IRA 1-Nov-2024)▲[Note—The relative retention times in [Table 11](#) are provided as information that could aid in peak assignment.]**Table 11**▲ (IRA 1-Nov-2024)

Name	Relative Retention Time
Pseudoephedrine	1.0
Fexofenadine	1.0
▲Methcathinone ^a ▲ (IRA 1-Nov-2024)	1.2 ^b
Fexofenadine related compound A	1.2 ^c
▲Fexofenadine olefin▲ (IRA 1-Nov-2024) ^d	1.8
▲Fexofenadine related compound C	2.3▲ (IRA 1-Nov-2024) ^c

^a 2-(Methylamino)-1-phenylpropan-1-one.^b Relative to pseudoephedrine.^c Relative to fexofenadine.^d ▲2-(4-{4-(Diphenylmethylene)piperidin-1-yl}-1-hydroxybutyl)phenyl)-2-methylpropanoic acid.▲ (IRA 1-Nov-2024)**Suitability requirements****Resolution:** NLT ▲1.5▲ (IRA 1-Nov-2024) between pseudoephedrine and ▲methcathinone,▲ (IRA 1-Nov-2024) System suitability solution; NLT 2.0 between fexofenadine and fexofenadine related compound A, Standard solution**Relative standard deviation:** NMT 1.0% for ▲ (IRA 1-Nov-2024) pseudoephedrine ▲ (IRA 1-Nov-2024), System suitability solution; NMT 1.0% for ▲ (IRA 1-Nov-2024) fexofenadine,▲ (IRA 1-Nov-2024) and NMT 3.0% ▲each▲ (IRA 1-Nov-2024) for fexofenadine related compound A and ▲fexofenadine related compound C,▲ (IRA 1-Nov-2024) Standard solution**▲Signal-to-noise ratio:** NLT 10 for fexofenadine and pseudoephedrine, Sensitivity solution▲ (IRA 1-Nov-2024)**Analysis****Samples:** ▲Standard solution,▲ (IRA 1-Nov-2024) Sample solution, and Reference solution

Calculate the percentage of fexofenadine related compound A and ▲fexofenadine related compound C▲ (IRA 1-Nov-2024) in the portion of Tablets taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_u = Δ (IRA 1-Nov-2024) peak area response of Δ (IRA 1-Nov-2024) fexofenadine related compound A or Δ fexofenadine related compound C Δ (IRA 1-Nov-2024) from the *Sample solution*

r_s = peak area response of fexofenadine related compound A or Δ fexofenadine related compound C Δ (IRA 1-Nov-2024) from the *Standard solution*

C_s = concentration of Δ (IRA 1-Nov-2024) [USP Fexofenadine Related Compound A RS](#) or Δ [USP Fexofenadine Related Compound C RS](#) Δ (IRA 1-Nov-2024) in the *Standard solution* (mg/mL)

C_u = nominal concentration of fexofenadine hydrochloride in the *Sample solution* (mg/mL)

Calculate the percentage of Δ methcathinone Δ (IRA 1-Nov-2024) in the portion of Tablets taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times (1/F) \times 100$$

r_u = peak height response of Δ methcathinone Δ (IRA 1-Nov-2024) from the *Sample solution*

r_s = peak height response of pseudoephedrine from the *Standard solution*

C_s = concentration of [USP Pseudoephedrine Hydrochloride RS](#) in the *Standard solution* (mg/mL)

C_u = nominal concentration of pseudoephedrine hydrochloride in the *Sample solution* (mg/mL)

F = relative response factor for Δ methcathinone, Δ (IRA 1-Nov-2024) 0.394

Calculate the percentage of Δ fexofenadine olefin or any unspecified degradation product Δ (IRA 1-Nov-2024) in the portion of Tablets taken:

$$\text{Result} = r_u/(F \times r_s + r_T) \times 100$$

r_u = Δ (IRA 1-Nov-2024) peak area response of Δ fexofenadine olefin or each unspecified degradation product Δ (IRA 1-Nov-2024) from the *Sample solution*

F = difference in concentration between the *Sample solution* and the *Reference solution*, 25

r_s = peak area response of fexofenadine hydrochloride from the *Reference solution*

r_T = sum of the peak area responses of all Δ unspecified degradation products Δ (IRA 1-Nov-2024) from the *Sample solution*

Δ (IRA 1-Nov-2024)

Acceptance criteria: See [Table 12](#). Δ Use an appropriate reporting threshold. See [User-Determined Reporting Thresholds \(477\)](#).

[**NOTE**—A reporting threshold of 0.1% may be suitable when the maximum daily dose is ≤ 1 g.] Δ (IRA 1-Nov-2024)

Table 12

Name	Acceptance Criteria, NMT (%)
Δ (IRA 1-Nov-2024)	Δ (IRA 1-Nov-2024)
Δ (IRA 1-Nov-2024)	Δ (IRA 1-Nov-2024)
Δ Methcathinone Δ (IRA 1-Nov-2024)	0.2
Fexofenadine related compound A	0.4
Δ Fexofenadine olefin Δ (IRA 1-Nov-2024)	0.2
Δ Fexofenadine related compound C Δ (IRA 1-Nov-2024)	0.2
Any Δ unspecified degradation product Δ (IRA 1-Nov-2024)	0.2

Name	Acceptance Criteria, NMT (%)
Total ▲ degradation products▲ (IRA 1-Nov-2024)	0.8

Change to read:**• ORGANIC IMPURITIES, PROCEDURE 2**

Solution A: Dissolve 2.7 g of [monobasic potassium phosphate](#) and 2.2 g of [sodium 1-octanesulfonate](#) in 1000 mL of [water](#). Adjust with [phosphoric acid](#) to a pH of 2.50 ± 0.05 .

Mobile phase: [Methanol](#) and **Solution A** ▲(60:40)▲ (IRA 1-Nov-2024)

Standard stock solution: 0.18 mg/mL of [USP Fexofenadine Hydrochloride RS](#) in *Mobile phase*

Standard solution: 0.0108 mg/mL of [USP Fexofenadine Hydrochloride RS](#)▲ from the **Standard stock solution**▲ (IRA 1-Nov-2024) in *Mobile phase*
▲ (IRA 1-Nov-2024)

Sensitivity solution: ▲1.08▲ (IRA 1-Nov-2024) µg/mL of [USP Fexofenadine Hydrochloride RS](#)▲ from the **Standard solution**▲ (IRA 1-Nov-2024) in *Mobile phase*
▲ (IRA 1-Nov-2024)

Sample solution: ▲Nominally 1.08 mg/mL of fexofenadine hydrochloride from Tablets prepared as follows.▲ (IRA 1-Nov-2024) Weigh and finely powder 9 Tablets, and quantitatively transfer ▲a suitable amount of▲ (IRA 1-Nov-2024) the ground powder to a ▲suitable▲ (IRA 1-Nov-2024) volumetric flask, with the aid of ▲40% of the flask volume▲ (IRA 1-Nov-2024) of *Mobile phase*. Sonicate for 10 min, and add an additional ▲20% of the flask volume▲ (IRA 1-Nov-2024) of *Mobile phase*. Shake by mechanical means for 30 min, and dilute with *Mobile phase* to volume. Pass a portion of the solution through a polypropylene or polysulfone membrane filter of 0.45-µm pore size, and discard ▲an appropriate volume▲ (IRA 1-Nov-2024) of the filtrate.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 215 nm

Column: 4.6-mm × 25-cm; 5-µm packing [L1](#)

Flow rate: 1 mL/min

Injection volume: 20 µL

Run time: NLT 6 times the retention time of fexofenadine▲ (IRA 1-Nov-2024)

System suitability

Samples: *Standard solution* and *Sensitivity solution*

▲[Note—The relative retention times in [Table 13](#) are provided as information that could aid in peak assignment.]

Table 13▲ (IRA 1-Nov-2024)

Name	Relative Retention Time
Fexofenadine	1.0
▲ Fexofenadine related compound B ^a ▲ (IRA 1-Nov-2024)	1.14
Fexofenadine related compound A	1.38
▲Fexofenadine olefin▲ (IRA 1-Nov-2024) ^b	2.25

^a 2-(3-{1-Hydroxy-4-[4-(hydroxydiphenylmethyl)piperidin-1-yl]butyl}phenyl)-2-methylpropanoic acid.

^b ▲2-(4-[4-(Diphenylmethylene)piperidin-1-yl]-1-hydroxybutyl}phenyl)-2-methylpropanoic acid.▲ (IRA 1-Nov-2024)

Suitability requirements

Tailing factor: NMT 2.0, *Standard solution*

Relative standard deviation: NMT 5.0%, *Standard solution*

Signal-to-noise ratio: NLT 10, *Sensitivity solution*

Samples: Standard solution and Sample solution

Calculate the amount of each Δ degradation product Δ (IRA 1-Nov-2024) as a percentage of the label claim of fexofenadine hydrochloride in the portion of Tablets taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times (1/F) \times 100$$

r_U = peak response of Δ each degradation product Δ (IRA 1-Nov-2024) from the Sample solution

r_S = peak response of fexofenadine from the Standard solution

C_S = concentration of [USP Fexofenadine Hydrochloride RS](#) in the Standard solution (mg/mL)

C_U = nominal concentration of fexofenadine hydrochloride in the Sample solution (mg/mL)

F = relative response factor for each Δ degradation product Δ (IRA 1-Nov-2024) (see Δ [Table 14](#) Δ (IRA 1-Nov-2024))

Acceptance criteria: See [Table 14](#). Δ Use an appropriate reporting threshold. See [User-Determined Reporting Thresholds \(477\)](#).

[NOTE—A reporting threshold of 0.1% may be suitable when the maximum daily dose is ≤ 1 g.] Δ (IRA 1-Nov-2024)

Table 14

Name	Relative Response Factor	Acceptance Criteria, NMT (%)
Δ Δ (IRA 1-Nov-2024)	Δ Δ (IRA 1-Nov-2024)	Δ Δ (IRA 1-Nov-2024)
Δ Fexofenadine related compound B Δ (IRA 1-Nov-2024)	1.0	0.2
Fexofenadine related compound A	0.83	0.4
Δ Fexofenadine olefin Δ (IRA 1-Nov-2024)	1.3	0.2
Δ Any unspecified degradation product Δ (IRA 1-Nov-2024)	1.0	0.2
Total Δ degradation products Δ (IRA 1-Nov-2024)	—	0.5

Change to read:

• **ORGANIC IMPURITIES, PROCEDURE 3**

Solution A: 4 Δ g/L Δ (IRA 1-Nov-2024) of [ammonium acetate](#)

Mobile phase: [Methanol](#) and Solution A Δ (95:5) Δ (IRA 1-Nov-2024)

Diluent: [Methanol](#) and [water](#) Δ (50:50) Δ (IRA 1-Nov-2024)

Standard stock solution: 0.18 mg/mL of [USP Pseudoephedrine Hydrochloride RS](#) in [Diluent](#)

Standard solution: 0.0216 mg/mL of [USP Pseudoephedrine Hydrochloride RS](#) from the Standard stock solution in [Diluent](#)

Sensitivity solution: Δ 2.16 Δ (IRA 1-Nov-2024) μ g/mL of [USP Pseudoephedrine Hydrochloride RS](#) from the Standard solution in [Diluent](#)

Sample solution: Δ Nominally 2.16 mg/mL of pseudoephedrine hydrochloride from Tablets prepared as follows. Δ (IRA 1-Nov-2024) Weigh and finely powder 9 Tablets, and quantitatively transfer Δ a suitable amount of Δ (IRA 1-Nov-2024) the ground powder to a Δ suitable Δ (IRA 1-Nov-2024) volumetric flask, with the aid of Δ 40% of the flask volume Δ (IRA 1-Nov-2024) of [Diluent](#). Sonicate for 10 min, and add an additional Δ 20% of the flask volume Δ (IRA 1-Nov-2024) of [Diluent](#). Shake by mechanical means for 30 min, dilute with [Diluent](#) to volume, and mix. Pass a portion of the solution through a polypropylene or polysulfone membrane filter of 0.45- μ m pore size, and discard Δ an appropriate volume Δ (IRA 1-Nov-2024) of the filtrate.

Chromatographic system

(See [Chromatography \(621\)](#), [System Suitability](#).)

Mode: LC

Detector: UV 215 nm**Column:** 4.6-mm × 25-cm; 5-μm packing [L3](#)**Flow rate:** 1 mL/min**Injection volume:** 20 μL**System suitability****Samples:** Standard solution and Sensitivity solution

▲[Note—The relative retention times for methcathinone and pseudoephedrine are 0.85 and 1.0, respectively. These relative retention times are provided as information that could aid in peak assignment.]▲ (IRA 1-Nov-2024)

Suitability requirements**Tailing factor:** NMT 2.0, Standard solution**Relative standard deviation:** NMT 5.0%, Standard solution**Signal-to-noise ratio:** NLT 10, Sensitivity solution**Analysis****Samples:** Standard solution and Sample solution

Calculate the amount of ▲any degradation product▲ (IRA 1-Nov-2024) as a percentage of the label claim of pseudoephedrine hydrochloride in the portion of Tablets taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times (1/F) \times 100$$

r_U = peak response of ▲each degradation product▲ (IRA 1-Nov-2024) from the Sample solution

r_S = peak response of pseudoephedrine from the Standard solution

C_S = concentration of [USP Pseudoephedrine Hydrochloride RS](#) in the Standard solution (mg/mL)

C_U = nominal concentration of pseudoephedrine hydrochloride in the Sample solution (mg/mL)

F = relative response factor, ▲(see [Table 15](#))▲ (IRA 1-Nov-2024)

Acceptance criteria: ▲See [Table 15](#). Use an appropriate reporting threshold. See [User-Determined Reporting Thresholds \(477\)](#).

[Note—A reporting threshold of 0.1% may be suitable when the maximum daily dose is ≤1g.]

Table 15▲ (IRA 1-Nov-2024)

Name	Relative Response Factor	Acceptance Criteria, NMT (%)
▲Methcathinone▲ (IRA 1-Nov-2024)	0.52	0.2
▲Any unspecified degradation product	1.0	0.2▲ (IRA 1-Nov-2024)

Change to read:• **ORGANIC IMPURITIES, PROCEDURE 4****Solution A:** Dissolve 2.7 g of [monobasic potassium phosphate](#) and 2.2 g of [sodium 1-octanesulfonate](#) in 1000 mL of [water](#). Adjust with [phosphoric acid](#) to a pH of 2.50 ± 0.05.**Solution B:** [Methanol](#) and **Solution A** ▲(40:60)▲ (IRA 1-Nov-2024)**Solution C:** [Methanol](#) and **Solution A** ▲(70:30)▲ (IRA 1-Nov-2024)**Mobile phase:** See [Table 16](#).**Table 16**

Time (min)	Solution B (%)	Solution C (%)
0	100	0
40	100	0
41	0	100

Time (min)	Solution B (%)	Solution C (%)
65	0	100
66	100	0
90	100	0

Diluent: [Methanol](#) and [water](#) ▲(50:50)▲ (IRA 1-Nov-2024)

Standard stock solution: 0.18 mg/mL of [USP Benzoic Acid RS](#) in *Diluent*

Standard solution: 0.0216 mg/mL of [USP Benzoic Acid RS](#) from the *Standard stock solution* in *Diluent*

Sensitivity solution: 1.08 µg/mL of [USP Benzoic Acid RS](#) from the *Standard solution* in *Diluent*

Sample solution: ▲Nominally 2.16 mg/mL of pseudoephedrine hydrochloride from Tablets prepared as follows.▲ (IRA 1-Nov-2024) Weigh and finely powder 9 Tablets, and quantitatively transfer ▲a suitable amount of▲ (IRA 1-Nov-2024) the ground powder to a ▲suitable▲ (IRA 1-Nov-2024) volumetric flask, with the aid of ▲40% of the flask volume▲ (IRA 1-Nov-2024) of *Diluent*. Sonicate for 10 min, and add an additional ▲20% of the flask volume▲ (IRA 1-Nov-2024) of *Diluent*. Shake by mechanical means for 30 min, dilute with *Diluent* to volume, and mix. Pass a portion of the solution through a polypropylene or polysulfone membrane filter of 0.45-µm pore size, and discard ▲an appropriate volume▲ (IRA 1-Nov-2024) of the filtrate.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 215 nm

Column: 4.6-mm × 25-cm; 5-µm packing [L1](#)

Flow rate: 1 mL/min

Injection volume: 10 µL

System suitability

Samples: *Standard solution* and *Sensitivity solution*

▲[Note—The relative retention times in [Table 17](#) are provided as information that could aid in peak assignment.]

Table 17▲ (IRA 1-Nov-2024)

Name	Relative Retention Time
Benzaldehyde	0.43
Benzoic acid	0.55
▲Methcathinone ^a ▲ (IRA 1-Nov-2024) ^b	0.97
Pseudoephedrine	1.0

▲^a 2-(Methylamino)-1-phenylpropan-1-one.▲ (IRA 1-Nov-2024)

▲^b ▲Methcathinone▲ (IRA 1-Nov-2024) is not quantitated in this method. A separate method is used for the quantitation of this impurity.

Suitability requirements

Tailing factor: NMT 2.0, *Standard solution*

Relative standard deviation: NMT 5.0%, *Standard solution*

Signal-to-noise ratio: NLT 10, *Sensitivity solution*

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the amount of ▲any degradation product▲ (IRA 1-Nov-2024) as a percentage of the label claim of pseudoephedrine hydrochloride in the portion of Tablets taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times (1/F) \times 100$$

r_u = peak response of ▲each degradation product▲ (IRA 1-Nov-2024) from the *Sample solution*

r_s = peak response of benzoic acid from the *Standard solution*

C_s = concentration of [USP Benzoic Acid RS](#) in the *Standard solution* (mg/mL)

C_u = nominal concentration of pseudoephedrine hydrochloride in the *Sample solution* (mg/mL)

F = relative response factor for each Δ degradation product Δ (IRA 1-Nov-2024) (see [Table 18](#))

Acceptance criteria: Δ See [Table 18](#). Use an appropriate reporting threshold. See [User-Determined Reporting Thresholds \(477\)](#).

[NOTE—A reporting threshold of 0.1% may be suitable when the maximum daily dose is \leq 1g, for compounds other than benzaldehyde and benzoic acid.] Δ (IRA 1-Nov-2024)

Table 18

Name	Relative Response Factor ^a	Acceptance Criteria, NMT(%)
Benzaldehyde	0.40	0.1
Benzoic acid	1.0	0.1
Δ Δ (IRA 1-Nov-2024)	Δ Δ (IRA 1-Nov-2024)	Δ Δ (IRA 1-Nov-2024)
Δ Δ (IRA 1-Nov-2024)	Δ Δ (IRA 1-Nov-2024)	Δ Δ (IRA 1-Nov-2024)
Δ Any unspecified degradation product Δ (IRA 1-Nov-2024)	0.52 ^b	Δ 0.2 Δ (IRA 1-Nov-2024)
Total Δ degradation products Δ (IRA 1-Nov-2024) ^c	Δ — Δ (IRA 1-Nov-2024)	0.3

^a Response factors relative to benzoic acid.

^b The response factor of pseudoephedrine relative to that of benzoic acid is used in the calculation of Δ any Δ (IRA 1-Nov-2024) unspecified Δ degradation product. Δ (IRA 1-Nov-2024)

^c Sum of the total Δ degradation products Δ (IRA 1-Nov-2024) from Δ [Organic Impurities](#), Δ (IRA 1-Nov-2024) *Procedure 3* and *Procedure 4*.

ADDITIONAL REQUIREMENTS

• **PACKAGING AND STORAGE:** Preserve in well-closed containers, and store at controlled room temperature.

Change to read:

• **LABELING:** Δ Δ (IRA 1-Nov-2024) The labeling states the Δ *Dissolution* Δ (IRA 1-Nov-2024) test used only if *Test 1* is not used. If a test for *Organic Impurities* other than *Procedure 1* is used, the labeling states with which *Procedures* the article complies.

Change to read:

• **USP REFERENCE STANDARDS (11)**

[USP Benzoic Acid RS](#)

[USP Fexofenadine Hydrochloride RS](#)

[USP Fexofenadine Related Compound A RS](#)

2-(4-[4-(Hydroxydiphenylmethyl)piperidin-1-yl]butanoyl)phenyl)-2-methylpropanoic acid.

Δ Δ (IRA 1-Nov-2024)

$C_{32}H_{37}NO_4$ 499.65

Δ [USP Fexofenadine Related Compound C RS](#)

4-[4-(Hydroxydiphenylmethyl)piperidin-1-yl]-1-(4-isopropylphenyl)butan-1-ol hydrochloride.

$C_{31}H_{39}NO_2 \cdot HCl$ 494.12 Δ (IRA 1-Nov-2024)

[USP Pseudoephedrine Hydrochloride RS](#)

¹ A suitable sinker is available as catalog number CAPWST-31 from [www.qla-llc.com](#).

Topic/Question	Contact	Expert Committee
FEXOFENADINE HYDROCHLORIDE AND PSEUDOEPHEDRINE HYDROCHLORIDE EXTENDED-RELEASE TABLETS	Documentary Standards Support	SM52020 Small Molecules 5

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. 50(2)

Current DocID: [GUID-921E386F-235F-40B7-8A3E-369E08FDC1F3_7_en-US](#)

DOI: https://doi.org/10.31003/USPNF_M33077_07_01

DOI ref: [92enu](#)

OFFICIAL